
DOCTORAL THESIS

SORBONNE UNIVERSITÉ

École Doctorale Informatique, Télécommunication et
Électronique

Speciality: COMPUTER SCIENCE

Presented by

EVE LE GUILLOU

to obtain the degree of

Ph.D. of Sorbonne Université

Distributed Topological Data Analysis

Defended on October 10th, 2025, before the committee:

Bruno RAFFIN Senior Scientist Inria President of the jury

David CŒURJOLLY Senior Scientist CNRS Reviewer

Tom PETERKA Senior Scientist Argonne National Laboratory Reviewer

Isabelle BLOCH Professor Sorbonne Université Examiner

Federico IURICICH Assistant Professor Clemson University Examiner

Christophe CALVIN Senior Fellow CEA Examiner

Pierre FORTIN Professor University of Lille Co-advisor

Julien TIERNY Senior Scientist CNRS Advisor

Sorbonne Université

LIP6 – Laboratoire d’Informatique de Paris 6

UMR 7606 Sorbonne Université – CNRS

4 Place Jussieu – 75005 Paris

Mais que diable allait-il faire à cette galère ?
Les Fourberies de Scapin, Molière

Acknowledgments

Remerciements

The order of the names in a same group is generated randomly.

L’ordre des noms dans un même groupe est généré aléatoirement.

I will begin by sincerely thanking the reviewers of this manuscript, David

Cœurjolly and Tom Peterka, for taking the time to read and review my

work. I greatly appreciate your comments and feedback. I would also like

to thank the other members of this jury, Isabelle Bloch, Bruno Raffin, Fed-

erico Iuricich and Christophe Calvin. I am honored to present my work

to you, and I truly appreciate your generosity in sharing your knowledge

and expertise with me.

Un grand merci à vous, Pierre et Julien, de m’avoir donné l’opportunité

de faire ma thèse avec vous. Vous êtes individuellement des encad-

rants avec beaucoup de qualités, mais en duo, une synergie opère et

vous formez un tandem exigeant et motivant qui m’a poussé à donner

le meilleur de moi-même. J’ai beaucoup appris pendant cette thèse, aussi

bien sur la science que sur moi-même. Je n’aurais pas pu y arriver sans

vous.

Merci aux membres de l’équipe APR que j’ai pu croiser lors de mes

venues à Paris. Merci en particulier aux membres de la secte TTK: Jules,

Mathieu, Pierre (Guillou), Keanu, Mohamed, Mattéo, Sébastien et Sylvain.

J’ai beaucoup apprécié échanger avec vous, notamment autour d’un verre

à VIS!

Merci à l’équipe CFHP de m’avoir accueillie: Florent, Louis, David,

Mike, François, François, Fabien, Adrien et Thi Xuan. C’est toujours un

plaisir de discuter avec vous au détour d’une pause café et d’estimer en-

semble combien de voitures garées sur les places handicapées du parking

sont en infraction.

Merci à l’équipe SIGMA de m’avoir adoptée lors de nombreuses

pauses déjeuner. Heureuse de faire partie de l’adhérence ! Merci à Pierre

(Palud), Rémi, Patrick, Jérémie, Louis, Vincent, Jan, Nicolas, Aurélien,

Vladimir, Martin, Thomas, Barbara, Clémence, Pauline et tous ceux que

j’ai pu oublier. Mention spéciale aux indéboulonnables de la team Tupper-

ware & Sandwich du midi, Pierre-Antoine, Stéphane, Maxime et Jenny. Ces

moments de détente et de partage ont toujours été les bienvenus dans

mon quotidien. Jenny, merci pour ces retours et conseils (et histoires

vii

d’horreur !) sur la condition de femme dans les sciences. Pierre (Chainais),

merci pour tes enseignements, aussi bien en tant qu’enseignant-chercheur

pendant mes études que au fil de discussions anodines durant ma thèse.

Je garde précieusement certains conseils que tu m’as donnés et les em-

porterai tout au long de ma carrière. Je te souhaite le meilleur.

Merci à Kitware, et en particulier aux membres avec qui j’ai interagi :

Charles Gueunet, François Mazen, Mathieu Westphale et Raphaël Cazorla.

Merci pour vos réponses rapides à mes questions sur ParaView, ainsi que

votre intérêt pour le code Open-Source et la science ouverte !

Thank you, Irene Moulitsas, for introducing me to HPC at Cranfield

and supervising my desire to learn more during my Master’s thesis.

Merci aussi à mes amis, ceux que je connais depuis longtemps et ceux

que j’ai rencontrés l’année dernière. Merci au Bataillon d’exploitation,

Ambre, Ed, Éloise, Grég, Lisa, Lug, Pauline, Pedro, Thomas, Mathis,

Xavier. Grâce à vous, je serai toujours un peu l’estropiée des prisons

de Nantes. Merci Centrale EHPAD, avec Corentin, Delphine, Évangé-

line, Tanguy, Julien, Nolwenn, Titouan (merci pour les photos!) et Emma.

Soirées quiz ou soirées Top Chef (et la défaite de Margaux), toujours un

bon moment. Merci aux CAGeux, Théo, Julia, Gaspard, Alex pour les

jeux, les vacances en Hongrie, les banderoles. Merci Iona pour ta sensi-

bilité, pour savoir quand "Ça va", en vrai, ça veut dire "Ça va pas". Merci

pour les aprèms jeux et les aprèms couture. Et merci Nymous, pour les

GIFs de tortues impromptus. Merci Schwarzeneclaire, tu es la meilleure

chose qu’il me reste de la prépa et je suis toujours heureuse quand on se

voit. Thank you Sam, for always being there for me. Though there is a sea

between us, I always feel close to you. Merci les copaings du collège-lycée,

team Nouvel An, Soledad, Gabriel, Luc, Yves, Sullivan, Lisa. Quand on

connaît quelqu’un si bien et depuis si longtemps, ça fait toujours plaisir

de se revoir.

Merci à ma famille. Merci à mon frère, Tristan, et à ma sœur, Adèle.

Merci de m’avoir montré la voie à suivre (ou pas !). Merci Papa et Maman,

pour cette enfance et cette jeunesse, et maintenant pour ma vie de jeune

adulte. Merci pour votre amour inconditionnel, votre soutien. Merci de

m’avoir transmis votre curiosité et votre goût de comprendre. Merci n’est

pas un mot assez fort pour exprimer ma gratitude mais il n’en existe pas

de meilleur. Merci. Je vous aime tous très fort.

viii

Communications

Journal Papers

TTK Is Getting MPI-Ready

Eve Le Guillou, Michael Will, Pierre Guillou, Jonas Lukasczyk, Pierre

Fortin, Christoph Garth, Julien Tierny

IEEE Transactions on Visualization and Computer Graphics

Presented at IEEE VIS 2024

Distributed Discrete Morse Sandwich: Efficient Computation of Persistence Dia-

grams for Massive Scalar Data

Eve Le Guillou, Pierre Fortin, Julien Tierny

Under major revision after submission to IEEE Transactions on Parallel

and Distributed Systems

Talks

ParaView User Day Europe 2025

Presenting: Distributed Discrete Morse Sandwich: Efficient Computation

of Persistence Diagrams for Massive Scalar Data

COMPAS 2025

Presenting: Distributed Topological Data Analysis with TTK and MPI

IEEE VIS 2024

Presenting: TTK is Getting MPI-Ready

Journée Visualisation 2024

Presenting: TTK is Getting MPI-Ready

ParaView User Day Europe 2024

Presenting: TTK is Getting MPI-Ready

xi

Contents

Acknowledgments - Remerciements vii

Communications xi

Contents xiii

Notations xix

1 Introduction 1

1.1 General Context and Motivations 2

1.1.1 Data Acquisition, Analysis and Visualization 2

1.1.2 Topological Data Analysis 2

1.1.3 The TORI Project . 3

1.2 Problem formulation . 3

1.2.1 Distributed-memory Topological Data Analysis 4

1.2.2 Mono-tailored distributed implementations 4

1.2.3 Persistence diagram computation 4

1.3 Contributions . 5

1.3.1 A unified framework for distributed Topological Data

Analysis . 5

1.3.2 Distributed computation of the persistence diagram . . . 5

1.4 Outline . 6

2 Foundations 9

2.1 Theoretical background on topology 11

2.1.1 Input Data Representation 11

2.1.2 Basic topological abstractions 18

2.1.3 Persistent homology . 21

2.1.4 Other Topological Abstractions 27

2.2 Parallel Computing . 28

2.2.1 Shared-memory parallelism 29

2.2.2 Distributed-memory parallelism 34

2.2.3 Hybrid MPI+thread programming 37

xiii

2.2.4 Alternative distributed-memory paradigms 40

2.2.5 GPU Computing . 42

2.2.6 Performance metrics for parallelism on CPUs 43

2.3 Software environment . 44

2.3.1 Existing front end visualization software frameworks . . 44

2.3.2 The Topology ToolKit 45

2.3.3 Existing TDA software frameworks 48

2.3.4 Shared-memory parallelism for TDA 49

3 A Software Framework for Distributed Topological

Analysis Pipelines 53

3.1 Outline . 57

3.1.1 Related work for distributed-memory TDA methods . . . 57

3.1.2 Contributions . 59

3.2 Distributed Model . 60

3.2.1 Input distribution formalization 60

3.2.2 Output distribution formalization 62

3.2.3 Implementation specification 63

3.3 Distributed Triangulation 64

3.3.1 Distributed explicit triangulation 65

3.3.2 Distributed implicit triangulation 67

3.3.3 Distributed implicit periodic triangulation 69

3.4 Distributed Pipeline . 70

3.4.1 Overview . 70

3.4.2 Infrastructure details . 72

3.5 Examples . 73

3.5.1 Algorithm taxonomy . 74

3.5.2 Hybrid MPI+thread strategy 76

3.5.3 Distributed algorithm examples 76

3.5.4 Integrated pipeline . 78

3.6 Results . 80

3.6.1 Distributed algorithms performance 81

3.6.2 Integrated pipeline performance 86

3.6.3 Limitations . 89

3.7 Summary . 90

4 Distributed Discrete Morse Sandwich: Efficient Com-
putation of Persistence Diagrams for Massive Scalar

Data 93

xiv

4.1 Outline . 97

4.1.1 Related work . 97

4.1.2 Contributions . 99

4.2 The original Discrete Morse Sandwich algorithm . . . 100

4.3 Overview . 105

4.4 Extremum-Saddle Persistence Pairs 105

4.4.1 Stable and unstable sets computation 106

4.4.2 Distributed extremum graph construction 106

4.4.3 Self-correcting distributed pairing 107

4.4.4 Shared-memory parallelism 111

4.5 Saddle-Saddle Persistence Pairs 111

4.5.1 Distributed-memory parallel algorithm 113

4.5.2 Anticipation of propagation computation 114

4.5.3 Overlap of communication and computation 118

4.6 Results . 119

4.6.1 Datasets . 120

4.6.2 Performance improvements 121

4.6.3 Strong scaling . 122

4.6.4 Weak scaling . 123

4.6.5 Performance comparison 124

4.6.6 Example . 126

4.6.7 Limitations . 127

4.7 Summary . 128

5 Conclusion 131

5.1 Summary of Contributions 131

5.1.1 A Software Framework for Distributed Topological Anal-

ysis Pipelines . 131

5.1.2 Efficient Computation of Persistence Diagrams for Mas-

sive Scalar Data . 132

5.2 Discussion . 133

5.3 Perspectives . 134

5.3.1 Investigating the cost of ghost simplices generation . . . 134

5.3.2 Adding distributed-memory support to NC and DIC al-

gorithms . 134

A Appendix: Data Specification 139

B Appendix: comparing MPI+thread configurations 143

xv

Bibliography 147

xvi

Notations

X Topological space

M Manifold

Rd Euclidean space of dimension d

σ, τ Simplex and face of a simplex

Lk(v), Lk−(v), Lk+(v) Link, lower link and upper link of a vertex v

St(v), St−(v) Star and lower star of a vertex v

w Isovalue

f−1(w) Level set of f at w

K Simplicial complex

T Triangulation

M Piecewise linear manifold

f :M→ R Piecewise linear scalar field

Mp Piecewise linear manifold of process p

M′
p Ghosted piecewise linear manifold of process p

Mi ith step of a filtration onM
Zp(K) Group of p-cycles of a simplicial complex K
Bp(K) Group of p-boundaries of a simplicial complex K
Hp(K) pth homology group of a simplicial complex K
βp(K) pth Betti number of a simplicial complex K
L+(v), L−(v) Forward and backward integral line starting in seed v

V Discrete vector field

Dd(f) d-dimensional persistence diagram of f

φd(j) Global identifier of the simplex σj of dimension d

φd Global to local identifier map for d-simplices

φ−1
d Local to global identifier map for d-simplices

∂(σ) Boundary of a simplex

Gd Graph of sets for dimension d

Gd,p, G ′d,p Local graph and ghosted local graph of sets for dimension d on process p

xix

1Introduction

With the rise of computers, the internet and more recently, AI, we

have heard a lot about data: data science, data mining, Big data.

Data has made its way into everyone’s everyday life. In 2018, it even made

its way into european law with the General Data Protection Regulation

(GDPR). But what is data? According to the Cambridge Dictionary, data is

“acts and numbers giving information about something”. Data itself is not

information, it holds information. It is useless if there is no way to extract

the knowledge it contains. Methods and tools to perform analyses of data

are flourishing, each fitting the needs of different problems. Specifically,

topological methods aim at extracting structural characteristics of data in a

concise representation to focus on the underlying information. Instead of

concentrating on every single detail, topological methods enable to zoom

out and consider a chain of mountains as an ensemble of peaks and valleys

rather than an ensemble of rocks.

However, when processing massive datasets, the data may become too

large to fit in the memory of a single computer or too large to be processed

in a reasonable time-frame. A solution is to turn to high performance en-

vironments and supercomputers, i.e. large computers composed of up

to thousands of smaller computers, called nodes, connected through a

network. Computations can then be made in parallel on several nodes

at once. Parallelism can occur both within a single node, where multiple

processor cores access a common memory (known as shared-memory paral-

lelism), and across multiple nodes, where each node has its own separate

memory. In the latter case, the memory is said to be distributed. Memory

and computing power are no longer a problem and much larger datasets

can be analyzed. However, in a distributed-memory setting, each node

has its own separate memory. The existing tools and methods need to be

reworked to add exchanges between the nodes so the algorithms can per-

1

2 Chapter 1. Introduction

form correctly. This thesis builds upon established topological techniques

to develop new approaches tailored to distributed-memory computations.

1.1 General Context and Motivations

1.1.1 Data Acquisition, Analysis and Visualization

In scientific computation, data comes from two main sources: data acqui-

sition and data simulation. Data acquisition refers to the act of measuring

physical quantities that characterize real world phenomena and translat-

ing it to digital values understandable by a computer. These physical

quantities may include temperature, pressure, or vibration. The range of

phenomena that can be captured is as broad as the variety of available sen-

sors, encompassing everything from medical imaging to sound recording.

Sensors technology improves over time to capture more and more details

and precision, inducing the growth of the produced datasets.

Data simulation is favored when replicating real-world scenarios is

more practical or effective than directly capturing them. It can be due to a

number of reasons. For instance, in the study of aerodynamics, simulating

the aerodynamics of a model aircraft is significantly more cost-effective

than constructing and testing a real one. In cosmology, capturing the

entire universe is impossible, making simulation the only viable option.

Moreover, simulations are invaluable for predicting future events, such as

weather patterns in meteorology. The precision of simulations is heavily

dependent on the complexity of the model and the available computa-

tion resources. As computational systems have continuously improved,

so have the datasets produced by simulations.

As datasets grew, so too did the need for complex and efficient anal-

yses methods to extract the information hidden within the data. Data

visualization is at the interface of data analysis and computer graphics

and relies on visual representation of the raw data to facilitate its explo-

ration. Specifically, scientific visualization aims at representing scientific

phenomena.

1.1.2 Topological Data Analysis

Topological Data Analysis (TDA) [EH09] apprehends the complexity

brought by massive data by providing concise encoding of the core

patterns in the data, to facilitate its analysis and visualization. It

is based on robust, multi-scale algorithms [ELZ02], which capture a

variety of structural features [HLH+
16]. Examples of applications

1.2. Problem formulation 3

include combustion [LBM+
06, BWT+

11, GBG+
14], material sciences

[GKL+
16, FGT16, SPD+

19], nuclear energy [MWR+
16], fluid dynam-

ics [KRHH11, NVBB+
22], bioimaging [CSvdP04, BDSS18], data science

[CGOS13, DTS+20], quantum chemistry [GABCG+
14, BGL+

18, OGT19,

OT23] and astrophysics [Sou11, SPN+
16]. In particular, the persistence

diagram is a concise and robust encoding of the topological features of

a dataset. Several algorithms have been conceived for its computation,

the current most efficient method being the Discrete Morse Sandwich

[GVT23]. However, the construction of this diagram is quite costly, both

in time and memory footprint.

With the above data size increase, it becomes frequent in the appli-

cations that the size of a single dataset exceeds the memory capacity of a

single computer, hence requiring to consider distributed-memory systems,

whose combined memory provides much larger capacities.

1.1.3 The TORI Project

In a world where data is constantly growing, having methods and tools

to analyze such volumes of data efficiently is of critical importance. The

TORI project (TOpological Reduction of Information 1, also referred to as In-

situ Topological Reduction of Scientific 3D Data 2) aims at addressing this is-

sue by developing the next generation of data reduction tools using Topo-

logical Data Analysis. The new tools and approaches developed during

this project are integrated in the Topology ToolKit (TTK) [TFL+
17], a li-

brary for topological analysis and visualization (see Section 2.3.2). TORI

revolves around two main axes: (i) developing new methods for the sta-

tistical analysis of collections of topological signatures, and (ii) design-

ing new approaches capable of carrying out these analyses on large-scale

datasets in a high-performance environment. This thesis is focused on the

second aspect: building on existing tools and approaches to perform these

analyses on large-scale datasets within an acceptable time-frame.

1.2 Problem formulation

In this thesis, we try to tackle several issues relative to distributed topo-

logical data analysis. In the following subsections, we specify with more

precision the different axes of our work.

1https://erc-tori.github.io/
2https://cordis.europa.eu/project/id/863464

https://erc-tori.github.io/
https://cordis.europa.eu/project/id/863464

4 Chapter 1. Introduction

1.2.1 Distributed-memory Topological Data Analysis

Adding distributed-memory support to an algorithm requires making sig-

nificant changes to the procedure. Firstly, to ensure that the execution is

correct and provides the right results. Secondly, to try and provide the

best performance possible, in term of both memory footprint and speed

of execution. The changes include exchanges of data or synchronizations

between nodes. These modifications to the algorithm induce additional

work that can slow down the overall execution, therefore, careful evalua-

tion is essential during redesign to keep these costs to a minimum. TDA

algorithms have their own specificities that tend to hinder efficiency in

a distributed-memory setting. Indeed, TDA aims at extracting global fea-

tures, whereas by definition, in a distributed-memory setting, no node has

access to the global data. TDA algorithms also tend to require multiple

global data traversals and little computation. This combination is difficult

to scale efficiently.

1.2.2 Mono-tailored distributed implementations

Existing distributed-memory implementations are mono-tailored for one

particular topological representation. This induces several drawbacks that

hinder a wider adoption of topological methods. Indeed, it makes it

harder to insert in existing workflows. Such implementations often of-

fer support for a limited number of data formats as input. Furthermore, a

lot of TDA algorithms do not provide a public implementation. This sig-

nificantly limits the practical usability of topological methods. TTK aims

at providing a unified framework for TDA algorithms with a reusable and

efficient data structure [TFL+
17], however prior to this work, it was lim-

ited to the computation on one node.

1.2.3 Persistence diagram computation

The persistence diagram, see Figure 2.10, is one of the most used topolog-

ical representation. This can be explained by its mathematical properties

that make it a very robust, reliable and simple descriptor of data, with

applications such as feature tracking [LGW+
19, SPD+

19, SPCT18a] and

ensemble summarization [VBT20, KVT19, FFST18]. Several algorithms ex-

ist to compute its data structure. In a distributed-memory setting, there

is only one publicly available implementation: DIPHA [BKR14b]. Cur-

rently, the most efficient algorithm on a single node is the Discrete Morse

1.3. Contributions 5

Sandwich (DMS) [GVT23], introduced by Guillou et al. This algorithm,

however, is limited to the computation on only one node.

1.3 Contributions

In this thesis, we aim at providing new approaches and tools for dis-

tributed Topological Data Analysis computation. This contribution can be

broken down in two axes, which we will present in this section.

1.3.1 A unified framework for distributed Topological Data Analysis

We build upon the existing TTK environment to provide a unified frame-

work for the distributed-memory computation of TDA. Specifically, we

add distributed support to TTK using the Message Passing Interface (MPI),

today’s most popular solution for distributed-memory computations. We

modify TTK’s core data structure to make it both usable and practical

in a distributed-memory context. Additional low and high level features

are added to facilitate developments of future distributed-memory algo-

rithms. Distributed-memory support is added to several existing algo-

rithms. These examples are used to both demonstrate how to use the new

features and showcase the performance of our new approaches. In an ef-

fort to help future development, a taxonomy of algorithms is provided

to categorize the algorithms based on their needs for exchanges between

nodes. Performance tests in different scenarios showcased the efficiency

of each algorithm as well as the low overhead of the overall software in-

frastructure. Finally, a real-life use case of topological analysis is applied

to two massive datasets to exhibit the proper functioning of our software.

1.3.2 Distributed computation of the persistence diagram

After setting up a helpful software environment for distributed-memory

computations of topological methods, we focus our efforts on one partic-

ular topological representation: the persistence diagram, and more specif-

ically: the Discrete Morse Sandwich algorithm. This approach is much

more complex to modify than the procedures of the previous contribu-

tion as parts of DMS rely on a sequential execution. Our new method,

the Distributed Discrete Morse Sandwich (DDMS), builds upon DMS and

introduces step-specific modifications tailored to the needs of each phase

of the algorithm. The multi-core parallelism of the original DMS is pre-

served and extended, resulting in a hybrid MPI+thread implementation.

6 Chapter 1. Introduction

Extensive performance tests showcase the efficiency of our approach and

demonstrates its gain over the original DMS method as well as DIPHA, the

reference method for persistence diagram computation in a distributed-

memory context. Our new algorithm is able to compute the persistence

diagram of datasets of up to 6 billion vertices.

1.4 Outline

The rest of this manuscript is organized as follows:

• In Chapter 2, we present the theoretical basis of Topological Data

Analysis upon which our work is based. We also provide an in-

troduction to Parallel Computing and present the existing software

environments and state-of-the-art tools for high performance Topo-

logical Data Analysis.

• In Chapter 3, we present our unified software framework for the

distributed-memory computation of topological analysis pipelines.

• In Chapter 4, we describe a new efficient method for computing the

persistence diagram in a distributed-memory setting based on the

existing Discrete Morse Sandwich algorithm.

• Finally, we summarize our work in Chapter 5 and discuss current

limitations as well as open problems.

2Foundations

Contents

2.1 Theoretical background on topology 11

2.1.1 Input Data Representation 11

2.1.2 Basic topological abstractions 18

2.1.3 Persistent homology . 21

2.1.4 Other Topological Abstractions 27

2.2 Parallel Computing . 28

2.2.1 Shared-memory parallelism 29

2.2.2 Distributed-memory parallelism 34

2.2.3 Hybrid MPI+thread programming 37

2.2.4 Alternative distributed-memory paradigms 40

2.2.5 GPU Computing . 42

2.2.6 Performance metrics for parallelism on CPUs 43

2.3 Software environment . 44

2.3.1 Existing front end visualization software frameworks . . . 44

2.3.2 The Topology ToolKit . 45

2.3.3 Existing TDA software frameworks 48

2.3.4 Shared-memory parallelism for TDA 49

This chapter introduces the basis of Topological Data Analysis and Par-

allel Computing that our work is based on as well as the existing

visualization softwares. First, we formalize the representation of our in-

put data. We then introduce several topological representations useful for

our work such as critical points and persistence diagrams. In a second part,

we introduce different types of parallelism, such as shared-memory and

9

10 Chapter 2. Foundations

distributed-memory parallelism and we position ourselves within that set-

ting. Finally, we present an overview of the existing visualization software

environments. We also present the Topology ToolKit (TTK) [TFL+
17], the

software framework our work contributes to.

This chapter, particularly its section regarding Topological Data Anal-

ysis, contains definitions adapted from [EH09], [Tie18] as well as Jules

Vidal’s [Vid21], Mathieu Pont’s [Pon23] and Charles Gueunet’s thesis

[Gue19]. We refer the reader to the reference book [EH09] for a more

detailed introduction to computational topology.

2.1. Theoretical background on topology 11

2.1 Theoretical background on topology

2.1.1 Input Data Representation

In the field of scientific visualization, scalar data is typically defined over

a geometric structure, oftentimes called a mesh or a grid. In our appli-

cations, the input grid is either two- or three-dimensional. In practice,

a computer needs a finite numbers of values and therefore this input is

discretized. In this manuscript, we consider piecewise linear (PL) mani-

folds. It can be intuitively defined as a locally smooth topological space

discretized using small building blocks called simplices such as triangles

and tetrahedra. The section hereafter formalizes these terms and describes

several topological objects fundamental to our work.

2.1.1.1 Domain Representation

The domain is the geometric object on which the input data is defined. The

following definitions iteratively formalize the domain to produce the ob-

ject we will work with for the remainder of the manuscript: the piecewise

linear manifold. We start by defining topological spaces and manifolds.

Definition 2.1 (Topological Space, Topology, Open Sets) A set X is called a topological space if

there exists a collection T of subsets of X such that:

– The empty set ∅ and X itself belong to T.

– Any union of elements of T belongs to T.

– Any finite intersection of elements of T belongs to T.

T is said to be a topology of X. Its elements are the open sets of X.

Definition 2.2 (Homeomorphism) A function f : X1 → X2 is a homeomorphism if it is a

continuous bijection and if its inverse f−1 is also continuous. X1 and X2

are said to be homeomorphic.

Definition 2.3 (Manifold) A topological space M is a d-manifold if every element m ∈M

has an open neighborhood N homeomorphic to an open neighborhood of

Rd

Intuitively, a manifold is a topological space for which, if zoomed in

enough, every area resembles an open Euclidean d-ball. The complete ge-

ometry of the domain can turn out to be much more complex but when

inspected in detail, smaller areas are somewhat smooth and easily de-

scribed.

12 Chapter 2. Foundations

Figure 2.1 – Illustration of simplices, respectively from left to right: 0 (a vertex), 1 (an

edge), 2 (a triangle) and 3 (a tetrahedron).

Definition 2.4 (Convex set) A set C of an Euclidean space Rn of dimension n is convex if

for any two points x, y in C and all t ∈ [0, 1], the point (1− t)x + ty is also

in C.

Definition 2.5 (Convex hull) The convex hull of a set of points P in an Euclidean space Rn

is the unique minimal convex set containing all points of P.

Definition 2.6 (Simplex) A d-simplex is the convex hull of d+ 1 affinely independent points

of an Euclidean space Rn, with 0 ≤ d ≤ n. d is the dimension of the

simplex. In our applications, with d ≤ 3, the simplices are defined as

follows (see Figure 2.1):

• A 0-simplex is a vertex.

• A 1-simplex is an edge.

• A 2-simplex is a triangle.

• A 3-simplex is a tetrahedron.

Simplices can be seen as the smallest building blocks that can be used

to represent the input domain. The relationship between them can be

expressed using the concept of face.

Definition 2.7 (Face) A face τ of a d-simplex σ is the simplex defined by a non-empty

subset of the d + 1 points of σ, and is noted τ ≤ σ. σ is called the co-face

of τ.

The faces of a tetrahedron are its four triangles, its six edges and four

vertices. Now that this building blocks are defined, the natural next step

is to define the input domain as a combination of simplices: this is a

simplicial complex.

Definition 2.8 (Simplicial Complex) A simplicial complex K is a finite collection of non-

empty simplices σi, such that every face of a simplex in K is also in K, and

any two simplices intersect in a common face or not at all.

2.1. Theoretical background on topology 13

Figure 2.2 – Example of piecewise linear manifold of dimension 3, based on an unstruc-

tured (or irregular) grid. On the left figure, the triangles making up the surface of the

manifold are visible. On the right figure, the cut in the domain reveals its interior made

of tetrahedra.

Definition 2.9 (Triangulation) A triangulation T of a topological space X is a simplicial

complex K such that the union of its simplices is homeomorphic to X.

The triangulation is the preferred representation of grids and meshes

because all grids can easily be turned into a triangulation by subdividing

cells into simplices. However, in practice, the following notion is used as

it is a bit more restrictive and illustrated here Figure 2.2.

Definition 2.10 (Piecewise linear manifold) A piecewise linear (PL) manifold M is the trian-

gulation of a manifold M.

2.1.1.2 Scalar Field Representation

The domain of our input has been defined: it is a piecewise linear man-

ifold. However, it is not the subject of interest of our analysis, the scalar

data is, in the form of a univariate scalar field. There needs to be a map-

ping between our domain geometrical structure composed of simplices

and the scalar field defined on vertices. This leads to the definition of

barycentric coordinates, that allow to define any d-simplex σ as a linear

combination of 0-simplices.

Definition 2.11 (Barycentric Coordinates) Let p be a point of Rn and σ a d-simplex. Let

α0, . . . , αd be a set of real coefficients such that p = ∑d
i=0 αivi, (where

v0, . . . , vd are the 0-simplices face of σ) and such that ∑d
i=0 αi = 1. Such

coefficients are called the barycentric coordinates of p relatively to σ.

14 Chapter 2. Foundations

Figure 2.3 – The figure on the left shows a piecewise linear manifold in the form of a

pegasus on which is defined a scalar field corresponding to the elevation of the vertices.

On the middle figure is shown a level set of this manifold (highlighted contour). The

figure on the right depicts the sub-level set of this manifold for the same isovalue.

Definition 2.12 (Piecewise Linear Scalar Field) Let a triangulation T and a function h that

maps the vertices of T to R. A piecewise linear (PL) scalar field f on T is

a function that maps any point p of a d-simplex σ of T to a value f (p) =

∑d
i=0 αih(vi) with α0, . . . , αd the barycentric coordinates of p relatively to σ

and v0, . . . , vd the 0-simplices of σ. f is linearly interpolated from h on σ.

In the rest of the manuscript, the scalar data will be a piecewise lin-

ear scalar field. The input field is typically defined on the vertices of a

PL manifold and is interpolated to obtain its value for simplices of higher

dimension. Furthermore, we will only consider PL scalar fields that are

injective on our domain (i.e. ∀v0 6= v1 ∈ M, f (v0) 6= f (v1)). In pratice,

this is easily achieved by substituting the f value of a vertex by its position

in the vertex order (by increasing f values), a practice inspired from Simu-

lation of Simplicity [EM90]. This will be useful later in subsubsection 2.1.3.1

when defining the notion of filtration.

Definition 2.13 (Level set) Let M be a piecewise linear manifold. The level set f−1(w) of

an isovalue w ∈ R relatively to a scalar field f : M→ R is the pre-image

of w ontoM through f : f−1(w) = {p ∈ M| f (p) = w}.

Definition 2.14 (Sub-Level set) The sub-level set of an isovalue w ∈ R relatively to a PL

scalar field f :M→ R is the set of points: {p ∈ M| f (p) ≤ w}.
In other words, the level set of w for the scalar field f is the set of points

p of M for which f (p) = w and the sub-level set of of w for the scalar

field f corresponds to the set of points p for which f (p) ≤ w. Level sets

2.1. Theoretical background on topology 15

Figure 2.4 – Illustration of the star and the link of a vertex v (in red) for a two-

dimensional PL manifold. The figure on the left shows the simplices in the neighborhood

of v. The middle figure represents the star St(v) of v and the figure on the right represents

the link Lk(v) of v.

and sub-level sets are illustrated in Figure 2.3. The notion of sub-level set

is instrumental to TDA as it studies the changes in topology of an input

data set for various sub-level sets.

2.1.1.3 Related neighborhood definitions

In this subsection, we formally introduce several geometrical constructions

to navigate the neighborhoods of vertices within a manifold, namely the

star and link of a simplex, illustrated in Figure 2.4. These notions will be

useful for the descriptions of topological representations defined in the

next sections.

Definition 2.15 (Star) The star of a simplex σ of a simplicial complex K, noted St(σ), is the

set of simplices of K that contain σ: St(σ) = {σ′ ∈ K, σ ≤ σ′}.

Definition 2.16 (Lower Star) The lower star St−(v) of a vertex v of a simplicial complex K
relatively to a PL scalar field f : K → R is the subset of the simplices in

the star of v whose vertices have lower value than v, defined as St−(v) =

{σ ∈ St(v)|∀u ∈ σ, f (u) ≤ f (v)}.

Definition 2.17 (Link) The link of σ is the set of faces of the simplices of St(σ) that are

disjoint from σ: Lk(σ) = {σ′ ≤ τ, τ ∈ St(σ), σ′ ∩ σ = ∅}.
Intuitively, the link of a vertex can be viewed as the boundary of its

star.

Definition 2.18 (Lower and Upper Link) The lower link Lk−(v) (respectively the upper link

Lk+(v)) of a vertex v given a PL scalar field f is the subset of the simplices

of the link Lk(v) whose vertices have a strictly lower (respectively higher)

function value than v. It is defined for the lower link as Lk−(v) = {σ ∈

16 Chapter 2. Foundations

Lk(v)|∀v′ ∈ σ, f (v′) < f (v)} (respectively Lk+(v) = {σ ∈ Lk(v)|∀v′ ∈
σ, f (v′) > f (v)})

2.1.1.4 Topological invariants

Now that our input has been precisely defined, a natural question to ask

is how to compare those inputs. Topological invariants are structural de-

scriptors of a space that are preserved under specific types of geometrical

deformations (e.g. homeomorphisms). They are useful to compare the

topology of two spaces while not focusing on the detailed geometry of

the two spaces. An example of topological invariants is the number of

connected components.

Definition 2.19 (Connected space) A topological space X is said to be connected if for every

pair of points in X there is a path in X between them.

Definition 2.20 (Connected components) The largest connected subsets of a topological space

are called its connected components.

The notion of connected components allows to describe very succinctly

a space and compare it to another space. Naturally, a lot of topological

information is lost when relying solely on this descriptor. To go further

while still preserving very efficient descriptors, one can look into homology.

Homology is a framework used to describe input data by inspecting

how a space is connected. It tracks the holes of a domain, which equals,

among other things, to its connected components. The homology of a

space is described by its Betti numbers β0, β1, . . . , βd ∈ N. In low dimen-

sions, Betti numbers are accompanied with a very concrete intuition: β0 is

the number of connected components, β1 is the number of handles and β2

is the number of voids. Connected components, handles, and voids are all

viewed as “holes” in homology. Holes of a domain are robust and efficient

topological invariants, useful to compare spaces.

Figure 2.5 illustrates the use of Betti numbers to compare spaces. The

ball and the glass have the same number of connected components (one),

the same number of handles (none) and the same number of void (none).

To understand what it means to say that these two spaces are unaffected

by homeomorphism, one can think of the ball as a ball of clay. If it is

possible to sculpt this ball of clay into the other shape without creating

or deleting connected components, handles or voids, then the two spaces

indeed are homeomorphic. It is not, however, possible to sculpt the ball

into the mug, as the handle of the mug is a topological handle. These two

2.1. Theoretical background on topology 17

Figure 2.5 – Manifolds of different Betti numbers. The ball has one connected component

(β0 = 1), no handle (β1 = 0) and no void (β2 = 0). It is homeomorphic to the glass, but

not to the solid torus (β0 = 1, β1 = 1 and β2 = 0) that possesses a handle. The solid

torus is homeomorphic to the mug, that also has a handle.

spaces therefore have different homology invariants. The mug yields the

same Betti numbers as the solid torus, that also has a handle.

Homology is not limited to the study of holes within the whole do-

main. A very common technique is the study of the evolution of holes on

a series of sub-level sets. The domain is characterized by increasing the

isovalue of the sub-level set and studying where “holes” appear or disap-

pear. This ensemble of sub-level sets can be formalized into what is called

a filtration.

2.1.1.5 Filtration

Definition 2.21 (Filtration) Let f be an injective scalar field defined on a simplicial complex

M, such that f (τ) < f (σ) for each face τ of each σ ∈ M. Let n be the

number of simplices of M and Mi be the sub-level set of f by the ith

value in the sorted set of simplices values. The nested sequence of sub-

complexes M0 = ∅ ⊂ M1 ⊂ · · · ⊂ Mn = M is called the filtration of

f .

Intuitively, a filtration can be seen as a scan of a simplicial complex.

All its simplices are sorted in increasing order and added one by one to

the current simplicial sub-complex, sweeping through all the simplices.

As illustrated in Figure 2.6, the topology of a filtration, and its Betti num-

bers, will change in specific vertices, called critical points. In practice, in

this manuscript, the comparison of two simplices is made by listing the

vertex orders of both simplices by decreasing values, and by comparing

the resulting lists with lexicographic comparison. The associated filtration

is called the lexicographic filtration.

18 Chapter 2. Foundations

Figure 2.6 – Example of filtration on a scalar field representing the elevation on a terrain.

As the next simplex of lowest scalar value is added to the filtration, the topology of the

domain changes: in (a), the terrain is composed of two connected components (β0 = 2).

In (b), only one connected component remains, but a handle has appeared (β1 = 1). This

handle continues in (c) (β1 = 1). In (d), the handle has been divided in two (β1 = 2).

In (e), only one handle is left (β1 = 1). Finally, in (f), the whole domain has been swept

through, no handle is left (β1 = 0).

Figure 2.7 – Example of critical points and integral lines on a toy example (elevation f

on a terrainM, (a)). The vertices ofM can be classified based on their star into regular

vertices (b), local minima (c), saddle points (d) or local maxima (e). Integral lines (orange

curves, (f)) are curves which are tangential to the gradient of f .

2.1.2 Basic topological abstractions

In this subsection, we will define several topological abstractions useful in

the rest of this manuscript using the topological notions defined earlier.

2.1.2.1 Critical Points

Though we first described critical points by relying on the evolution of a

filtration, they can also be defined by inspection of their local neighbor-

hoods, as formalized by Banchoff in [Ban67].

2.1. Theoretical background on topology 19

Definition 2.22 (Critical Point) Let a PL scalar field f : M ∈ R defined on a PL manifold

M. A vertex v is regular if and only if both Lk−(v) and Lk+(v) are simply

connected. Otherwise, v is a critical vertex of f .

Definition 2.23 (Extremum) Let a PL scalar field f : M ∈ R defined on a PL manifoldM.

A critical point v is a minimum (respectively a maximum) of f if and only

if Lk−(v) (respectively Lk+(v)) is empty.

Definition 2.24 (Saddle) Let a PL scalar field f : M ∈ R defined on a PL manifold M.A

critical point v is a saddle if and only if it is neither a minimum nor a

maximum of f .

Figure 2.7(a-e) illustrates the different types of critical points and their

associated lower and upper links on a toy example representing the eleva-

tion f of a terrainM. A critical vertex v can be classified by its index I(v),
which is 0 for minima (Figure 2.7(c)), 1 for 1-saddles (Figure 2.7(d)), (d− 1)

for (d− 1)-saddles and d for maxima (Figure 2.7(e)). Vertices for which the

number of connected components of Lk−(v) or Lk+(v) are greater than 2

are called degenerate saddles.

2.1.2.2 Integral Lines

Integral lines are curves on M which locally describe the gradient of f

(orange curves in Figure 2.7(f)). They can be used to capture and visual-

ize adjacency relations between critical points. The starting vertex of an

integral line is called a seed.

Definition 2.25 (Forward integral line) Given a seed v, its forward integral line, noted L+(v),

is a path along the edges ofM, initiated in v, such that each edge of L+(v)

connects a vertex v′ to its highest neighbor v′′.

When encountering a saddle s, we say that an integral line forks: it

yields one new integral line per connected component of Lk+(s). Integral

lines can merge (and possibly fork later). A backward integral line, noted

L−(v), is defined symmetrically (i.e. integrating downwards).

2.1.2.3 Discrete Gradient

In recent years, an alternative emerged to the PL formalism of critical

points described above (subsubsection 2.1.2.1), namely Discrete Morse

Theory (DMT) [For98]. This formalism implicitly resolves several chal-

lenging configurations (such as degenerate saddles on manifold do-

mains), which has been particularly useful for the development of ro-

20 Chapter 2. Foundations

Figure 2.8 – Example of discrete gradient field for a given scalar field (left). The larger

spheres represent critical simplices. The light yellow arrows are edge-triangle pairs. The

light blue arrows are vertex-edge pairs. Two examples of v-paths are shown in transparent

blue (right), going from a critical edge and ending in critical vertices. These form the

unstable set of the critical edge.

bust algorithms in the context of Morse-Smale complex computation

[RWS11, GBP19].

Definition 2.26 (Discrete Vector) A discrete vector is a pair formed by a simplex σi ∈ M
(of dimension i) and one of its co-facets σi+1 (i.e. one of its co-faces of

dimension i + 1), noted {σi < σi+1}.
In Figure 2.8 (left), the discrete vectors are the small light blue and

light yellow arrows. σi+1 is usually referred to as the head of the vector

(represented with a small cylinder in Figure 2.8), while σi is its tail (rep-

resented with a small sphere in Figure 2.8). Examples of discrete vectors

include a pair between a vertex and one of its incident edges, or a pair

between an edge and a triangle containing it.

Definition 2.27 (A discrete vector field) A discrete vector field on M is then defined as a

collection V of pairs {σi < σi+1}, such that each simplex ofM is involved

in at most one pair.

This setting yields a new definition for a critical point, here referred to

as a critical simplex.

Definition 2.28 (Critical simplex) A simplex σi which is involved in no discrete vector V is

called a critical simplex.

The dimension of the critical simplex corresponds to its index in the

2.1. Theoretical background on topology 21

smooth setting [Mil63, Mor34]. A critical 0-simplex (or vertex) is called

a minimum, a 1-simplex (or edge) a 1-saddle, a 2-simplex (or triangle)

a 2-saddle and a 3-simplex (or tetrahedron) a maximum. In Figure 2.8,

critical simplices are represented by larger spheres. Similarly to the critical

points defined by Banchoff, critical simplices can be linked by integral

lines, called v-paths (see Figure 2.8, right).

Definition 2.29 (V-path) A v-path, or discrete integral line, is a sequence of discrete vectors{
{σ0

i < σ0
i+1}, . . . , {σk

i < σk
i+1}

}
, such that (i) σ

j
i 6= σ

j+1
i (i.e. the tails of

two consecutive vectors are distinct) and (ii) σ
j+1
i < σ

j
i+1 (i.e. the tail of a

vector in the sequence is a face of the head of the previous vector), for any

0 < j < k.

Definition 2.30 (Discrete stable and unstable sets) The collection of all the discrete integral

lines terminating in a given critical simplex σi is called the discrete stable

set of σi. Symmetrically, the collection of all the discrete integral lines

starting at a given critical simplex σi is called the discrete unstable set of

σi.

Definition 2.31 (Discrete gradient field) A discrete gradient field is then a discrete vector field

such that all its possible v-paths are loop-free.

Intuitively, this means that all critical simplices can be connected by

following discrete vectors without any loops in the paths. Several algo-

rithms have been proposed to compute such a discrete gradient field from

an input PL scalar field. We consider in this work the algorithm by Robins

et al. [RWS11], given its proximity to the PL setting: each critical cell

identified by this algorithm is guaranteed to be located in the star of a

PL critical vertex (subsubsection 2.1.2.1). In practice the computation is

performed through inspection of the local neighborhood of each vertex,

which makes this step embarrassingly parallel.

2.1.3 Persistent homology

Critical points are a very powerful tool as they can be easily computed us-

ing only the data of a neighborhood of a vertex. However, they have their

limitations, particularly in a real world setting, where the input data is of-

ten very noisy. Every single small function undulation will create a critical

point, making the overall result difficult to read as it is impossible to dis-

tinguish noise from actual features of the data. A solution to this problem

is persistent homology: this formalism introduces the notion of persistence. It

22 Chapter 2. Foundations

Figure 2.9 – Examples of 1-cycles on a sub-complex of a filtration. The PL scalar field

represents the elevation on a terrain. Both the orange and the blue rings are 1-cycles.

Indeed, the computation of their boundaries results in summing all the vertices of each

ring twice (as all vertices are faces of exactly two edges of the ring), yielding a boundary

equal to 0 for each cycle. However, the two cycles are not homologous: it is not possible

to go from one to the other by simply adding a p-boundary.

can be understood as a measure of the importance of a feature detected by

a critical point. Using this importance, it is then possible to rank features

or even discard the features of lesser importance that correspond to noise.

In this subsection, we will formalize the definition of persistent homology

and its most common abstraction: the persistence diagram.

2.1.3.1 Homology group

In this subsection, we formalize what was touched upon for low dimen-

sional data in subsubsection 2.1.1.4. Connected components, handles and

voids are what is called a homology class, that can be generalized to higher

dimensions. It relies on the concept of cycles, used to detect “holes”, as a

sum of simplices.

Definition 2.32 (p-chain) A p-chain c is a formal sum of modulo 2 coefficients of p-

simplices σi of M: ∑ αiσi with αi ∈ {0, 1}. Two p-chains can be summed

together component-wise to form a new p-chain.

A p-chain can be modeled with a bit mask where a simplex is present

if it has been added an odd-number of times. For example, adding the

two 0-chains a = v0 + v1 and b = v1 + v2 will yield a + b = v0 + v2.

Definition 2.33 (Boundary of a p-simplex) The boundary of a p-simplex σi is noted ∂σi and

is defined as the sum of its faces of dimension (p− 1).

Definition 2.34 (Boundary of a p-chain) The boundary of a p-chain c is the sum of the

boundaries of its simplices: ∂c = ∑ αi∂σi.

2.1. Theoretical background on topology 23

Definition 2.35 (p-cycle) A p-cycle c is a p-chain such that ∂c = 0.

Definition 2.36 (Group of p-cycles) The group of p-cycles of a simplicial complex K is the

group of all p-cycles of K, noted Zp(K).
The concept of a p-cycle is central to the definition of homology group.

Intuitively, it is a p-chain that is able to “go around” the domain and

end where it started, as illustrated in Figure 2.9 (blue and orange rings).

However, it is not enough to detect a “hole” in the domain. For this, one

needs to study the relationship between cycles and p-boundaries.

Definition 2.37 (p-boundary) A p-boundary is a p-chain that is itself the boundary of a

(p + 1)-chain.

Definition 2.38 (Group of p-boundaries) The group of p-boundaries of a simplicial complex

K is the group of all p-boundaries of K, noted Bp(K).
p-boundaries are always p-cycles however the opposite is not true: p-

cycles are not necessarily p-boundaries. For example, in Figure 2.9, the

orange cycle is also a boundary (of the rest of the little hill it surrounds).

However, the blue cycle surrounds a hole: the boundary of that hole is

a 1-cycle, but it is not a 1-boundary, as the hole is devoid of simplices.

Cycles that are not p-boundaries are captured by the concept of homology

group.

Definition 2.39 (Homology group) The pth homology group of a simplicial complex K is

the quotient group of its p-cycles modulo its p-boundaries: Hp(K) =

Zp(K)/Bp(K).
With this definition, we can now define the equivalence between cycles:

two p-cycles c and c′ are called homologous if one can be transformed into

the other by adding the boundary of a (p + 1)-chain c′′: c = c′ + ∂c′′. The

set of all cycles that are homologous defines a homology class. Intuitively, a

homology class gathers all the cycles surrounding the same set of “holes”.

Each class is composed of cycles that are homologous to each other. Any

one of them can be chosen as the representative of that class. In Figure 2.9,

the blue cycle is homologous to the boundary of the hole and therefore

belongs to the same class. With these definitions, it is now possible to

formally define Betti numbers as the number of homology classes within

a homology group.

Definition 2.40 (Betti Numbers) The pth Betti number of a simplicial complex K is the rank

of its pth homology group: βp(K) = rank(Hp(K)).
In other words, it is the number of linearly independent classes

24 Chapter 2. Foundations

of Hp(M) (called generators) Detecting the p-dimensional independent

“holes” in a domain therefore means extracting generators for the pth ho-

mology group. It follows that H0(K) contains the classes representing

connected components (with β0 its number of connected components),

H1(K) the handles and H2(K) the voids.

2.1.3.2 Persistence Diagram

Persistence homology can now be derived from the previous notions by

applying the concept of homology group to the subcomplexes of a fil-

tration. The filtration induces a sequence of mappings of the homology

group of the subcomplexes of K:

Hp(K0)→ Hp(K1)→ . . .Hp(Kn−1) = Hp(K) (2.1)

Instead of studying the homology group of one simplicial complex

K, the object of interest is the homology group of each subcomplex of

its filtration. The goal is not just to extract the generators of homology

classes of each subcomplex, but to track their evolution during the filtra-

tion: which generator is created at which step? When does it disappear?

The sequence of mappings can be used to define the notion of persistent

homology group. More precisely, these mappings are homomorphisms, map-

pings between groups that commute with the group operation. In the case

of homology groups, the group operation is the formal sum used in the

definition of p-chains.

Definition 2.41 (Persistent homology group) Let a filtration and the mappings induced by

inclusion, f i,j
p : Hp(Ki) → Hp(Kj) for 0 ≤ i ≤ j ≤ n − 1, between the

corresponding sequence of homology group. The pth persistent homology

group corresponds to the i,j images of these homomorphisms, noted Hi,j
p .

As the difference between two consecutive subcomplexes of a filtra-

tion is typically one simplex in the considered applications, it is possible

to identify exactly which simplex induces a change in the homology of the

subcomplexes and for which subcomplex of the filtration. Therefore, each

generator of Ki can be associated with a unique pair of critical simplices

(c, c’), corresponding to its birth (when the generator is created) and death

(when it disappears). It follows the notion of persistence: the persistence of

such a pair is equal to p = f (c′)− f (c). It is a measure of how long a gen-

erator has persisted though the filtration. With this, it is easy to distinguish

between salient features of the data and noise. Pairs of small persistence

2.1. Theoretical background on topology 25

Figure 2.10 – Example of persistence diagram and its construction. The PL scalar field,

noted f , represents the elevation on a terrain (left). The persistence diagram (upper, right)

tracks the evolution of homology generators in the filtration of f . Critical simplices of f

are represented as spheres, in light blue for minima, dark blue for merging saddles, orange

for splitting saddles and light yellow for maxima. The infinite pair is the biggest and

first pair of the diagram and ends with a larger black sphere. It represents the fact that

the input domain is made of a single connected component. Different sub-level sets of f

are shown in the bottom right figure (represented on top of each other). As the isovalue

increases, generators of homology classes are created: a new handle is created in s and

dies in m, yielding the pair (s, m), visible on the diagram. Another handle is created in s′

and dies in m′.

26 Chapter 2. Foundations

correspond to noise, whereas important features will yield a high value of

persistence.

When two generators merge into each other, the Edler rule is applied

[EH09]. It states that the youngest homology class dies in favor of the

oldest. The age of a class refers to the difference between the step of the

filtration it first appeared in and the current step of the filtration. The

older homology class appeared earlier in the filtration, it is therefore born

earlier.

The pairs of critical simplices (c, c’) can be efficiently encoded in a

topological abstraction called the Persistence Diagram.

Definition 2.42 (The Persistence Diagram) Let f be a PL scalar field. The pth persistence di-

agram of a filtration is a one-dimensional simplicial complex that embeds

generators for all homology class of the pth persistent homology group in

R2 by using its birth value as a first component and its birth and death

values as second components, noted Dp(f) (or Dp).

In a persistence diagram, critical simplices are arranged in pairs (c,

c’). Each simplex appears in only one pair, with f (c) < f (c′). c is a

p-simplex and c′ a (p + 1)-simplex. D0(f) tracks the birth and death of

connected components (and pairs minima and 1-saddles), D1(f) of han-

dles (and pairs 1-saddles and 2-saddles) and D2(f) of voids (and pairs

2-saddles and maxima).

Each pair of the diagram is embedded as a bar in the birth/death 2D

plane at the coordinates (f (c), f (c)) and (f (c), f (c′)). The persistence of

a pair can be read as the height of the bar (i.e. f (c)− f (c′)). Figure 2.10

shows an example of persistence diagram and illustrates how it is built.

In practice, the Elder rule is applied as follows, for example for D0:

if two connected components, born respectively in critical vertices v and

v′, with f (v) < f (v′), meet at the critical edge e, the younger vertex, here

v′, dies, in favor of v, the older one. The pair (v′, e) is then added to the

persistence diagram and the computation for the other pairs continues.

One class never dies in our example during the filtration: the first

class to appear in the filtration at the global minimum. It is never merged

with another class. It is said to have infinite persistence. In practice in the

diagram, a pair is still created, with its birth being the birth of the class

and its death is the global maxima. It is called an infinite pair.

As stated before, salient features are characterized by a high persis-

tence. In the diagram, it corresponds to the points located far from the

diagonal. Conversely, the noise of the domain produces points in the

2.1. Theoretical background on topology 27

Figure 2.11 – Persistence diagram for a clean (left) and noisy (right) dataset. Critical

simplices are represented by spheres (light blue: minima, light yellow: maxima, black:

end of the infinite pair, others: saddles). The persistence of each pair is the height of the

bar. Salient features (long pairs) can easily be distinguished from the noise (short pairs).

plane close to the diagonal, as shown in Figure 2.11. It becomes therefore

straightforward to focus on features of a certain importance. One simply

can use a threshold to filter out all pairs below a certain value of persis-

tence, producing the diagram on the left of Figure 2.11 from the diagram

on the right.

2.1.4 Other Topological Abstractions

Numerous other topological abstractions exist, each with their own char-

acteristics, upsides and limitations. As it is not the focus of our work, we

will not describe them in detail. However, we find of interest to sample a

few in order to broaden the reader’s knowledge of what is possible with

TDA. In particular, we will present the Merge Tree, the Reeb Graph and

the Morse-Smale Complex, illustrated in Figure 2.12.

2.1.4.1 The Merge Tree

The Merge Tree ([CSA00], Figure 2.12(a)) is very similar to the 0-

dimensional persistence diagram but keeps an additional piece of infor-

mation: the location of merge of the different homology classes. Instead

of just having pairs of simplices, the Merge Tree also records their hier-

archy by tracking the changes in connected components of sub-level sets.

This topological abstraction is popular as it efficiently encodes prominent

features of the data while simultaneously describing how they are con-

nected. As the persistence diagram and the Merge Tree are very similar,

the diagram of a dataset can be efficiently extracted from a Merge Tree.

28 Chapter 2. Foundations

Figure 2.12 – Examples of topological abstractions. The Merge Tree (a) detects salient

features of the data and records their connection to one another. The Reeb Graph (b)

enables the extraction of the structure of a shape. The Morse-Smale Complex (c) partitions

the data according to the gradient flow. Here it allows to segment the cells of this well-

known dataset [EH09].

2.1.4.2 The Reeb Graph

The Reeb Graph ([Ree46], Figure 2.12(b)) is an advanced topological ab-

straction that keeps more information than both the persistence diagram

and the Merge Tree. Indeed, where the persistence diagram only keeps

track of the birth and death of holes of the data, the Reeb Graph also

retains the adjacency relations between the connected components of the

level sets, making it an ideal tool to simplify and understand the structure

of a complex shape.

2.1.4.3 The Morse-Smale Complex

The Morse-Smale Complex ([EHNP03], Figure 2.12(c)) provides a partition

of the domain using integral lines and critical points. Integral lines connect

critical points and segment the domain into cells of similar gradient flow.

This is particularly useful for applications that see their features align with

the gradient (e.g., filament extraction).

2.2 Parallel Computing

We now focus on parallelism and its foundational principles, establish-

ing the core concepts and trends. Since their invention, continuous efforts

2.2. Parallel Computing 29

have aimed to make computers more powerful. Power came from differ-

ent sources that varied over time. Initially, manufacturers tried to improve

performance by increasing the frequency of processors, so it could per-

form more computations per second. Eventually, a plateau was reached

in the 2000s. Increasing the frequency meant increasing the consumption

of electrical power to such a degree that it became too high. A new idea

emerged: instead of having one core per processor, what about having

several cores that work together within one processor? Such a multi-core

computer indeed allowed for more computations, but required significant

changes in how computations were programmed, as parallelism was now

required to obtain performance gains: this is shared-memory parallelism.

There are different types of parallelism. In this section, we will look at sev-

eral, in particular shared-memory and distributed-memory parallelism.

Their specific programming paradigms will also be discussed.

2.2.1 Shared-memory parallelism

2.2.1.1 Shared-memory architectures

Shared-memory parallelism occurs when multiple processors share the

same memory on a computer. Single Instruction Multiple Data (SIMD) is

a type of parallelism that is often used in a shared-memory context. In

this context, the same instruction is applied to different data. Here is an

example of SIMD instruction: the addition of each element of two vectors

of integers of the same size. The instruction is always the same (an ad-

dition of two integers) but the data varies (elements of the vectors). The

first CPUs that implemented a SIMD paradigm are called Vector CPUs. A

cluster of Vector CPUs makes up a Vector Supercomputer. First examples

of vector supercomputers include the ILLIAC-IV1 (1975) and the Cray-1

(1976). Eventually, in the 1990s, interest for Vector CPUs, and their Super-

computers, waned in favor of CPUs capable of processing more complex

instructions. However, SIMD operations are still relevant today, modern

CPUs allowing for their use through specific sets of instructions like SSE,

AVX, AVX2 and AVX-512. Furthermore, this architecture is efficient for

repeated single instruction operations and regular memory accesses, two

characteristics that TDA algorithms typically lack.

Modern CPUs are composed of multiple cores that share the same

physical memory. It is common for a compute node to include more than

one processor, often two, with all processors accessing the same physical

memory and (see Figure 2.13). Nowadays, commodity processors typi-

30 Chapter 2. Foundations

Figure 2.13 – Architecture of a node of Sorbonne Université’s MCMeSU supercomputer.

A node is composed of two AMD EPYC 7313 Milan CPUs. Each processor possesses 16

cores and a NUMA node.

cally have 8 to 32 cores, while supercomputer processors have up to 64

cores and multiple processor per node, as can be seen in the Top 500 [top],

a famous ranking of the world’s most powerful supercomputers.

Because of the multi-processor architecture of modern compute nodes,

it is possible for cores to access some parts of the memory of a node faster

than other parts. This leads to a Non Uniform Memory Access architecture

(NUMA). It is important to take data locality into consideration when

programming for such architecture as well as when configuring thread

placement for runtime execution.

2.2.1.2 Shared-memory programming

Shared-memory parallelism is often implemented on modern CPUs by

relying on thread-based programming. Threads can be defined as light pro-

cesses. A process is the instance of a computer program that is being

executed. It has its own memory space and code that rules its execution.

In a shared-memory parallel setting, a process can spawn several threads.

Each thread has access to all the memory of the process. Typically, a thread

will be created for each core of the CPU to avoid the overhead of context

switch and cache reloading. Simultaneous Multi-Threading (SMT) refers

to the execution of instructions of different threads on one core at once.

When using SMT, a physical core (a core that truly exists on the hardware)

can host more than one logical core (a software abstraction representing a

core). Typically, a physical core will hold two logical cores, allowing for

more computations at once without paying the cost of operations such as

a context switch. In many instances, such a configuration has proven to

2.2. Parallel Computing 31

improve overall performance. SMT was not used in this work as it was

not available on Sorbonne Université’s supercomputers.

Each thread will be given work to perform simultaneously to other

threads. As all threads share the same memory, issues that do not arise

when running sequentially may occur. These problems are often left to

the programmer to solve. For example, some computations may require

all threads to have achieved their computation to a certain point before any

thread can continue past that point. This problem can be solved by imple-

menting a barrier between all threads to ensure all necessary computations

have been performed before resuming with the rest. Other problems can

also occur: multiple threads may want to access or modify the exact same

memory location at the same time. This leads to race conditions and un-

defined behaviors. Many solutions exist to prevent them from happening.

A Lock can ensure that only one thread at a time can execute a particular

section of code or access a shared resource. Atomic operations are lighter

way to ensure that the memory is only accessed or written to one thread

at a time. For example, an atomic update on a variable i to perform the

operation i++ will ensure that one thread: (1) loads i in a register, (2) in-

crements it and (3) writes it back to the memory shared by all threads. No

other threads can perform similar actions on this particular variable after

(1) started and until (3) is finished. These solutions will slow down the

overall execution by creating overhead or forcing threads to wait, there-

fore, it is imperative to manage these mechanisms carefully to optimize

performance.

2.2.1.2.1 Thread-based programming Several programming paradigms exist for

the creation and management of threads in a process. One of the first

general standard to do so was POSIX Threads, or Pthreads in 1995. Pthreads

is still in use today. It is a low level standard. It allows for a very fine-

grain control over thread management and a lot of flexibility in what can

be done. The drawback is that the programmer must be very careful and

explicit about what is being implemented and the code can become quite

complex.

Another widely popular standard for thread management is OpenMP

[Ope20]. The first version of the standard was published in 1997 and has

been iteratively improved and expanded over the years. The latest im-

provements to OpenMP focus on GPU offloading, first added to OpenMP

4.0 in 2013 and tasks, first added to OpenMP 3.0 in 2011. Though these

features were added over a decade ago, recent and significant efforts have

32 Chapter 2. Foundations

#pragma omp directive-name [clause]

{

// Block

}

Listing 2.1 – OpenMP basic block structure

int i;

#pragma omp parallel for private(i) shared(A, B, C)

{

for (i = 0; i < N; i++){

A[i] = B[i] + C[i];

}

}

Listing 2.2 – Example of OpenMP directive in a C++ code

greatly improved their performance and capabilities. The latest version,

OpenMP 6.0, was published in November 2024. Unlike Pthreads, it is a

very high level programming standard. It provides an extension to the

C, C++ and Fortran programming languages. OpenMP relies on the use

of directives, small lines of code that use the #pragma mechanism in C

and C++, and of comments in Fortran. The directives are high-level indi-

cations to the compiler of how it should parallelize the execution of the

code. Compilers can easily ignore OpenMP directives if the OpenMP sup-

port is not provided or not enabled. This means that code parallelized

with OpenMP can also execute sequentially without any changes to the

code.

An OpenMP block has the structure shown in Listing 2.1. OpenMP

relies on a Fork-Join model, which means that one process executes the

program in a master thread until reaching a code section needing parallel

execution, signaled using the parallel OpenMP directive. The process

will then create as many threads as required for the computation, depend-

ing on what is explicitly required by the block or by a global configuration

variable (such as the environment variable OMP_NUM_THREADS).

Listing 2.2 shows a basic parallelization of a for loop that computes

the element-wise sum of two vectors B and C. The omp keyword tells the

compiler that this pragma is an OpenMP directive. The parallel key-

word will induce the creation of threads and the parallel execution of the

2.2. Parallel Computing 33

code that follows, the for keyword will tell the compiler to parallelize the

following loop and the private and shared keyword allow for thread

memory management. The work in the for loop is parallelized by giv-

ing to each thread one or several chunks of iterations of the loop. The

number of iterations of a chunk is defined when reaching the directive.

Then, the workload of each thread can be managed statically or dynam-

ically, depending on what the programmer requires. A static workload

schedule means that chunks are assigned to specific threads once and for

all at the start of the for loop, whereas a dynamic workload schedule

means that chunks are assigned at runtime. This may be more efficient

when iterations of the loop are not all equal in terms of workload. In

that case, having more chunks than threads will help improving overall

performance as the overall work will be more evenly distributed.

OpenMP also enables to control the memory management of the

threads. Though they can access all the memory, each thread has its own

private memory. Directives allow the programmer to indicate which data

element should be only accessible within the private memory of a thread

and which is shared by all threads. The critical directive restricts the ex-

ecution of a code section to one thread at a time. The atomic directives

ensure an atomic access or modification of a variable.

OpenMP’s biggest strength is also the source of its weakness: this is a

very high level programming paradigm. With very little additional code,

a programmer is capable of parallelizing code and reducing drastically

its execution time. However, because OpenMP handles many tasks au-

tonomously, it is sometimes complicated to understand precisely what is

hindering performance and how to fix the problem. Furthermore, the

programmer is limited to the scope of the directives. For example, some

directives can only be applied to parallelize for loops. If the program is

structured differently, such directives are unusable. Nevertheless, its ease

of use and generally good performance make it a wildly used standard

for shared-memory parallelization in C/C++ and Fortran.

2.2.1.2.2 Task-based programming Another programming paradigm for shared-

memory parallelism is the task-based programming. Threads are also used

to perform the work; however, the way the work is divided and assigned

to threads is handled a bit differently. The work is divided in tasks that

correspond to small units of work. When a task is created, it is placed in a

task pool, where it waits until it is picked up by a thread for computation.

Mechanisms of dependencies and priorities organize tasks within the task

34 Chapter 2. Foundations

Figure 2.14 – Architecture of p + 1 nodes of Sorbonne Université’s MCMeSU super-

computer. Each node is composed of two CPUs and is connected with others through a

network.

pool to allow for correct and efficient execution. Task-based programming

was first introduced in Cilk [BJK+
95] in 1994. It has gained traction and is

now wildly used in several softwares and standards, as it allows to focus

on the tasks themselves rather than on the thread management. Frame-

works and standards that implement task-based programming include

StarPU [AAF+
12], oneTBB [Inta, Intb] or Charm++ [KK93]. OpenMP also

implements this paradigm, progressively adding tasks, dependencies and

then priorities. For OpenMP in particular, task-based programming en-

ables to dynamically balance a workload often more efficiently than nested

parallelism of blocks of code as described in the previous subsection.

While shared-memory parallelism allows for great improvements of

the execution time of a computation, one is still limited to the resources

of a single computer. If a computation needs more memory than a com-

puter can have then shared-memory parallelism is not a viable solution.

TDA problems often have a significant memory footprint, one too big to

fit in the memory of one computer. Additionally, execution time may be-

come prohibitively long, making computations impractical. When these

problems arise, one can look into distributed-memory parallelism.

2.2.2 Distributed-memory parallelism

When the capabilities of a single computer are insufficient, a common so-

lution is to use multiple computers, called computing nodes, into a cluster

of nodes. Nodes are interconnected using a high-speed network and form

a supercomputer. The difficulty of programming in a distributed-memory

context is that each node has its own memory and does not have direct

access to the memory of other nodes. Additional measures have to be

taken in order to exchange data between nodes and ensure the correct and

efficient execution of the computation. Similarly to the shared-memory

context, synchronization steps also may be required to ensure correct ex-

2.2. Parallel Computing 35

ecution. Nowadays, the most popular solution for distributed-memory

computations is the Message Passing Interface.

2.2.2.1 The Message Passing Interface

The Message Passing Interface (MPI) is a standard created in 1994 for

distributed-memory programming [Mes23]. It provides language bind-

ings for C and Fortran. Additional libraries, like mpi4py [DF21] in Python,

are built on top of the standard and follow closely C++ bindings. Similarly

to OpenMP, this standard has been progressively improved and expanded

over the years. Some of the latest major feature additions to MPI include

large counts in communications (limited up until now to a count described

by an integer), persistent collectives (collectives that will be reused fre-

quently) and an Application Binary Interface (a specification of the mem-

ory layout of the set of types and constants defined in MPI’s API). This last

feature was introduced in the latest version of MPI, version 5.0, published

in 2025.

Most MPI communications need to be explicitly defined both on the

sending and receiving end. When a program executes with MPI, several

processes will spawn, each with a distinct rank (i.e. its identifier), its own

memory, etc ... It is possible to have more than one process on one node.

In that case, some implementation may take advantage of the proximity

of the processes located on one node to speed-up the exchanges in prac-

tice. For example, Open MPI, a well-known open-source implementation

of MPI, uses a mechanism called the sm BTL (or Shared-Memory Byte Trans-

fer Layer) that relies on shared-memory for transferring data between two

processes.

There are different types of communications. The most common one is

point-to-point exchange: one process will communicate with a single other

process. An example of such a communication is shown in Listing 2.3. In

this code, process 0 will send the value of variable a to process 1. Both the

sending and receiving action need to be specified using separate functions

(MPI_Send and MPI_Recv). Other actions related to MPI featured in this

code include initializing the MPI context (with MPI_Init), retrieving the

total number of processes (with MPI_Comm_size), retrieving the rank of

the current process (with MPI_Comm_rank) and finalizing the MPI context

(with MPI_Finalize). This makes for quite a verbose implementation.

Collectives make for a second type of communications. They are de-

fined as communications involving a group of processes. Examples of col-

36 Chapter 2. Foundations

#include <iostream>

#include <mpi.h>

int main(int argc, char * argv[]){

int npes, myrank;

int a;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &npes);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Status status;

if (myrank == 0){

a = 15;

MPI_Send(&a, 1, MPI_INT, 1, 1,

MPI_COMM_WORLD);

}

if (myrank == 1){

MPI_Recv(&a, 1, MPI_INT, 0, 1,

MPI_COMM_WORLD, &status);

std::cout << "a :" << a << std::endl;

}

MPI_Finalize();

return 0;

}

Listing 2.3 – Example of MPI code. MPI_COMM_WORLD describes the group con-

taining all the processes.

2.2. Parallel Computing 37

lectives include MPI_Reduce, that performs global reduction operations

such as sum, maximum or the logical “and”, MPI_Gather, that gathers

elements of an array scattered on multiple processes to the memory of one

process and MPI_Scatter, that scatters elements of an array present on

one process across multiple processes. Finally, MPI also permits the use

of one-sided communications through the use of dedicated “windows”

that expose part of the memory of a process to direct access from other

processes. In practice, the use of one-sided communications is limited.

Both collectives and point-to-point communications can be executed in

a blocking or non-blocking manner. A non-blocking communication will

not stop the execution of the program: the process will exit the function

call and continue the rest of the computation even if the communication

itself is not over. Non-blocking communications induce less idle time be-

tween processes and therefore less time spent waiting. It also enables to

overlap communications and computations. However, it requires partic-

ular care to ensure the communications have occurred before using their

results. The overhead of non-blocking communications may sometimes

not be worth the gain.

This balance between cost and gain is true for all MPI actions. Commu-

nications and synchronizations between processes have a cost. Typically,

the execution time of a parallel program eventually stops decreasing even

when adding new processes to the execution. A plateau can be reached

due to the cost of running the computation in a distributed-memory con-

text. There can be too many communications, too many synchronizations

to enable a speedup of the execution time of the program. It is therefore

interesting to try and limit the number of MPI processes. A common solu-

tion is to use a hybrid MPI-X parallelization, with X being a programming

paradigm for shared-memory parallelism. Indeed, the nodes of most su-

percomputers have multiple cores. Instead of having one MPI process per

available core, one can have one process per node and use shared-memory

parallel programming on each node. In particular, we will look into hybrid

MPI+thread programming and more specifically, hybrid MPI+OpenMP

programming.

2.2.3 Hybrid MPI+thread programming

Hybrid MPI+thread programming can improve scalability over pure MPI

programming by reducing synchronizations and communications while

harnessing the power of multiple nodes. Furthermore, it can easily en-

38 Chapter 2. Foundations

able dynamic load balancing between threads of the same node. There

are fewer processes and possibly fewer communication overhead overall

while not being limited to the use of a single computer as in pure shared-

memory parallelism. If the program requires some data to be duplicated

over all processes, hybrid programming also permits to reduce memory

overhead. The main downside of this hybrid setting is that the program

needs to be parallelized for both programming paradigms. Development

can become overly complex and difficult to maintain. Furthermore, us-

age gets more complicated as one must optimize the placement of both

threads and processes. The threads can be bound to the CPU cores using

the OpenMP thread affinity features [Ope20]. Processes can also be bound

to specific nodes or hardware elements of a node, such as as a NUMA

node or a core. Process placement tools are often specific to each MPI

implementation. Such placement can be useful to better exploit compute

nodes with multiple NUMA nodes, by spawning and binding one process

for each NUMA node. This configuration ensures that the processes and

their threads will only access memory that is close and does not require

an extra cost.

The MPI standard supports the use of threads and provides dif-

ferent levels of thread support depending on the communication

needs of the threads. The level of support is activated at the begin-

ning of the program, by initializing the MPI context using the func-

tion MPI_Init_thread and specifying the required level of support.

The lowest level is MPI_THREAD_SINGLE: only one thread will exe-

cute. This is the default (the execution is not multithreaded). The

next level is MPI_THREAD_FUNNELED: only the thread that called

MPI_Init_thread will make MPI calls. The third level of support is:

MPI_THREAD_SERIALIZED: only one thread will make MPI library calls

at one time. Finally, the last level of support is MPI_THREAD_MULTIPLE:

multiple threads may call MPI at once with no restrictions. In practice,

only the last level of support creates a significant overhead at runtime, as

additional synchronizations need to be made for each MPI calls to ensure

calls made at the same time by multiple threads do not collide. Lower

thread supports influence more the development of the program than the

runtime execution. Additionally, some implementations of MPI allow to

request a given thread support through environment variables (such as

Open MPI with OMPI_MPI_THREAD_LEVEL).

A typical MPI+thread application that needs to perform communica-

tions and computations at the same time may want to use all threads

2.2. Parallel Computing 39

for its computation needs. The master thread then performs all the MPI

communications. This potentially creates an imbalance of work, with the

Master thread needing to perform both his computation and communi-

cation work. Having all threads participate equally in communications

is not necessarily an effective solution. Indeed, using the highest level of

thread support may induce an overhead not worth the gain [VKP+
15].

The communication thread is an alternative approach for applications

that perform communications and computations concurrently. It is a

thread dedicated to communications, both sending and receiving calls.

It is the only one to perform communications and in turn it performs

little to no computation work. This model has been implemented in

numerous projects like DAGuE [BBD+
12], starPU [AAF+

12] and others

[SFLC18, VKP+
15]. This model also allows for true overlap of communica-

tion and computation. Indeed, even though in the standard non-blocking

communications allow for overlap, in practice communications often do

not progress in the background by default [DT16, HSSW11]. The com-

munication may effectively occur only when waiting for its completion,

after the computation or when the process enters the MPI layer for any

other MPI function call. The communication thread dedicates a thread to

communications. In this setting, the thread is regularly waiting for com-

munication completion and therefore ensures the progress of the commu-

nications. It also allows for more reactivity as messages can be sent as

soon as ready, without using the highest thread support.

An immediate drawback from using a communication thread is that

there is one fewer thread to perform computation, therefore the gain must

be significant in order to justify its use. One could choose to spawn one

more thread than there are cores available to maintain the number of com-

putation cores, however this may decrease the reactivity of the communi-

cation thread and add additional costs with context switching and cache

loading, therefore this is not necessarily an efficient solution. Another

disadvantage is the complexity of implementing and maintaining such

a model. Debugging becomes significantly more complex to handle as

threads have different roles. The data structures for sending and receiving

messages also needs to be thread safe, meaning that all data accessed and

modified by threads relative to communications need to be designed for

safe concurrent accesses and modifications.

40 Chapter 2. Foundations

2.2.4 Alternative distributed-memory paradigms

As stated before, programming with MPI can be complex and time-

consuming. In this section, we look into several solutions that have been

implemented to try and mitigate this difficulty while maintaining good

performance.

2.2.4.1 Shared Virtual Memory Systems

Shared Virtual Memory Systems aim at simplifying programming in a

distributed-memory setting by considering the distributed memory of the

nodes as one global memory. This mechanism can be implemented at the

operating system level. The program is then run “as if” all nodes have

access to all the memory. No changes need to be implemented within the

program for a distributed-memory execution. However, the convenience

of use of such a system often collides with its cost.

2.2.4.2 The PGAS model

The Partitioned Global Address Space (PGAS) model [YBC+
07] aims at sim-

plifying distributed-memory programming by providing a global address

space that can be accessed by any process through one-sided communi-

cations. Examples of languages implementing the PGAS model include

Coarray Fortran [NR98] and UPC [CDC+
99]. The global address space

allows for a global memory access while maintaining awareness of dis-

tant data access. The model relies on one-sided communications: only

one node is aware the communication is happening, the remote node that

possess the data is not. This induces a simpler programming structure as

fewer calls are necessary to perform most communications. However, the

memory management can be quite complicated as it creates problematic

situations. For example, one must ensure with appropriate function calls

that only one process at a time will perform one-sided communication of

the same memory location. This model and its languages is high level, in

particular compared to MPI, and may be a bit too restrictive for complex

data traversal and computations.

2.2.4.3 Apache Spark

Another popular framework that seeks to abstract distributed-memory

management is Apache Spark [ZCD+
12]. It is an in-memory distributed

computing engine that can distribute computations across multiple nodes.

2.2. Parallel Computing 41

Apache Spark is built on an advanced distributed SQL engine for large-

scale data. It is specialized in data engineering, data science and ma-

chine learning. It is very high-level and provides API in Python, SQL,

Java, R and Scala. The engine is self-managing and fault-tolerant and

hides the distributed-memory problems as much as possible from the

user, with most distributed-memory management being done implicitly.

Its in-memory execution allows it to be much faster than its counterpart,

Hadoop. Indeed, at each processing step, Hadoop will read and write the

data to disk, whereas Spark relies on RAM to store the data during pro-

cessing. Its data structures relies on Resilient Distributed Datasets, which

are distributed memory abstractions for fault-tolerance and in-memory

computations.

However, most Spark computations are built on the MapReduce model

or SQL queries. This is efficient for structured grid datasets or computa-

tions that can be performed on DataFrames-like data. In the field of TDA,

performance results for such computations are promising [QLIF24] but it

has been limited to embarrassingly parallel algorithms such as computa-

tions of the critical points or of the Forman gradient. When more complex

data traversals and computations are needed, SQL-like and MapReduce-

like queries are not always adapted.

2.2.4.4 DIY

DIY [MP16a] is a block-parallel software library that enables developers

to write a single implementation of a given algorithm, while support-

ing at the same time multiple runtime configurations (out-of-core, shared-

memory parallelism or distributed-memory parallelism). The input data

is partitioned into blocks processed by threads, with either one or multiple

threads per process, seamlessly combining distributed-memory message

passing with shared-memory thread parallelism. The underlying abstrac-

tion that facilitates these capabilities is block parallelism [MP16a]. In this

model, computational blocks and their associated message queues are as-

signed to processing elements (such as MPI processes or threads) and are

dynamically migrated between memory and storage by the DIY runtime.

DIY implements complex communication patterns, such as neighbor ex-

change, merge reduction, swap reduction, and all-to-all exchange.

In practice, though it is not specifically designed for topological algo-

rithms, this library is mostly used in TDA applications [NM20, MP16b].

We made the choice not to rely on this library in our work because we be-

42 Chapter 2. Foundations

lieved that a custom MPI+thread implementation can provide more flexi-

bility than DIY. In particular, the block-parallel model prevents the imple-

mentation of a communication thread, which we believe could improve

the performance of topological algorithms in a hybrid MPI+thread setting.

Furthermore, the block-parallel model hinders dynamic load-balancing

within each node. With DIY, the workload within a single data block

cannot be distributed among multiple threads if needed, unlike a custom

MPI+thread implementation would allow.

2.2.5 GPU Computing

There is another architecture for parallelism that is left to mention: Graph-

ics Processing Units, or GPUs, and their many-core parallelism. In 2006,

NVIDIA released the CUDA architecture and its associated language,

CUDA C [Nvi25]. GPUs were originally designed to perform graphics

computation but their use has broaden over the years. Their architec-

ture is characterized by their very high number of computing cores (often

reaching thousands). Each core is less powerful than a CPU core but their

number makes for an overall excellent performance, in particular for em-

barrassingly parallel applications with repeated single instruction opera-

tions and regular memory accesses such as the training of neural networks

or computational fluid dynamics calculations. GPUs are not autonomous,

they need a CPU to function and trigger their computation. This setting

generates specific problems and solutions, such as data transfers between

the GPU and CPU or separate memory allocations. The rising popular-

ity of this execution model led to the development of standards such as

OpenCL [Khr25], which is similar to the CUDA C language but is not

limited to NVIDIA GPUs. On top being a commodity-based component

crucial to two industries (the gaming industry and professional graphics),

GPUs are also considered a better alternative to CPUs for scientific com-

putations (in terms of GFlop/s for energetic cost). All this contributes to

their current popularity.

However, we will not target GPUs in our work. This is due to two main

reasons. First, most TDA algorithms rarely require only regular memory

accesses. The cost of topological algorithms often rely on multiple irreg-

ular traversals of the data. The computations themselves are limited and

therefore would likely not be optimized for the GPU infrastructure. This

is why the past efforts to parallelize TTK in a shared-memory setting has

been focused on CPUs. Second, the current limitation pushing us towards

2.2. Parallel Computing 43

distributed-memory computation is the memory. TDA algorithms often

have a significant memory footprint. This is currently the limitation pre-

venting the use of TTK on larger datasets. Switching from executing on a

CPU to executing on a GPU will not provide more memory. In fact, GPUs

often have less memory than CPUs.

2.2.6 Performance metrics for parallelism on CPUs

To evaluate the performance and scalability of algorithms and their im-

plementations, one needs appropriate metrics and benchmarks. Different

methods and measurements of performance evaluation have been used

over the years. A good scaling study shows how effectively additional

cores are leveraged by an algorithm. A common analysis for assessing

scalability is the strong scaling analysis, where, for a particular dataset, the

algorithm is run several times with an increasing number of cores. The

main limitation of this setting is that there will always be a number of

cores beyond which performance will plateau or worsen. Another limita-

tion is that it requires that the algorithm be run on one node, which limits

the size of the input dataset. To solve these problems, one can turn to

a weak scaling analysis. In this setting, the size of the dataset is increased

proportionally with the number of cores in order to increase the workload.

However, increasing the size of the dataset does not necessarily increase

the workload proportionally, in particular in the case of TDA algorithms,

where the workload is often more dependent on the number of topologi-

cal structures than the size of the grid. For a more comprehensive study of

performance, in this manuscript, we will perform both strong and weak

scaling analyses when assessing performance of distributed-memory al-

gorithm.

Another question of performance evaluation is the representation of

the results. Though the execution time is the quantity that is measured in

the benchmarks, it may not be the best metric to understand the scalability

of an algorithm. We use the parallel efficiency, a commonly used metric

defined as follows for strong and weak scaling analyses.

Definition 2.43 (Speedup) The speedup sp for p cores is defined as sp = t1
tp

, with tp and t1

being the execution times for p and 1 cores.

Definition 2.44 (Strong scaling efficiency) The strong scaling efficiency for p cores is defined

as sp
p × 100, with sp the speedup on p cores.

Intuitively, a strong scaling efficiency of 100% corresponds to the case

44 Chapter 2. Foundations

where, when multiplying by two the number of cores, the execution time

is divided by two. Such an efficiency is often unattainable but is an ideal

goal.

Definition 2.45 (Weak scaling efficiency) The weak scaling efficiency for p cores is defined as
t1
tp
× 100, with t1 and tp being the execution times on 1 and p nodes.

Intuitively, a weak scaling efficiency of 100% corresponds to the case

where, when proportionally increasing the number of cores and the work-

load, the execution time is constant. Again, such an efficiency is often

unattainable but is an ideal goal.

This metric facilitates the representation of different datasets within a

figure by unifying the range. Indeed, the efficiency will always range from

0% to 100%, whereas execution time can vastly differ from one dataset to

the next. It is also a less forgiving representation than the speedup, as

it highlights the gradual drop-off from the unattainable perfect efficiency,

where the speedup usually shows an upward slope. This makes differ-

ences of performance between datasets or implementations more visible

as the number of cores increases.

2.3 Software environment

In this section, we examine the existing software tools upon which our

work is built. First, we will present several front end visualization soft-

wares, in particular the Visualization ToolKit (VTK) and ParaView. Sec-

ond, we will present the Topology ToolKit (TTK) and compare it to other

existing TDA softwares. Finally, we will discuss existing shared-memory

parallel algorithms and implementations.

2.3.1 Existing front end visualization software frameworks

There are numerous existing softwares for large scale visualization that al-

low for distributed-memory computations. Some come in the form of tool

kits and libraries, such as the Visualization ToolKit (VTK) [Kit03], a library

for manipulating and displaying scientific data, and VTK-m [MAB+
24], a

library for visualization and analysis optimized to perform well on many-

core platforms such as GPUs. Others offer more complete interfaces. Ex-

amples of such softwares include SCIRun [SCI23], a problem solving en-

vironment developed by the NIH Center for Integrative Biomedical Com-

puting, VisIt [CBW+
12], a scientific visualization and analysis tool that

operates on mesh-based field data, Ascent [LBCH22], a lightweight, in-

2.3. Software environment 45

situ visualization and analysis library designed for running multi-physics

simulations on HPC systems, and ParaView [AGL05], an open-source,

multi-platform scientific data analysis and visualization tool that enables

analysis and visualization of extremely large datasets.

In particular, ParaView has become the de-facto standard for the visu-

alization and analysis of large-scale data, by combining raw power, scal-

ability, extensibility, and usability. It has been developed and maintained

by the company Kitware for over 20 years and uses VTK to provide the

visualization and data processing model. It is backed by a large commu-

nity of contributors and researchers that drive its evolution to meet their

needs, making it a very complete tool for a wide-ranging number of use

cases.

2.3.2 The Topology ToolKit

The Topology ToolKit (TTK) [TFL+
17] is an open-source library for topolog-

ical data analysis and visualization, written in C++, which implements a

substantial collection of algorithms [BMBF+
19] for scalar data, bivariate

data, ensemble data or even point cloud data. Over 40 contributors have

participated in the development of TTK, totaling now 165 000 lines of

code in its core base. In contrast to pre-existing, tailored, mono-algorithm

implementations, TTK (1) supports multiple algorithms, (2) it is versa-

tile (it provides time and memory efficient supports for multiple, typical

data representations found in scientific computing and imaging, such as

triangulated domains or regular grids) and (3) it consistently supports

the combination of multiple algorithms into a topological analysis pipeline

(see the TTK Online Example Database [TTK22], a database of real-life data

analysis use cases, implementing advanced topological analysis pipelines,

combining multiple algorithms). This section provides some background

regarding TTK, and it details its pre-existing support (i.e. prior to this

work) for triangulation traversal.

2.3.2.1 Scope and interfaces

While TTK can be used directly via its raw, low-level C++ interface, TTK

also provides an interface of higher-level, for VTK. In particular, as de-

scribed in its companion paper [TFL+
17], each TTK algorithm is wrapped

into a VTK filter (i.e. an elementary data processing unit in the VTK

terminology). Specifically, each topological algorithm implemented in

TTK inherits from the generic class named ttkAlgorithm, itself inherit-

46 Chapter 2. Foundations

ing from the generic VTK data processing class named vtkAlgorithm.

Then, when reaching a TTK algorithm within a distributed pipeline, Par-

aView will call the function ProcessRequest (from the vtkAlgorithm

interface, see Figure 3.5). The re-implementation of this function in

the ttkAlgorithm class will trigger all the necessary preconditioning

before calling the actual topological algorithm (see Section 3.5 for ex-

amples), implemented in the generic function RequestData (from the

vtkAlgorithm interface). Thanks to this wrapping, a developer can use

TTK features with the same syntax as VTK features. TTK also provides a

plugin for ParaView. Then, ParaView users can interactively call TTK fil-

ters via its graphical user interface. Finally, TTK also provides two Python

interfaces (a low-level one, matching its VTK interface, and a high-level

one, matching its ParaView interface). In 2022, TTK was officially added

to ParaView, increasing its accessibility to non-programmer end-users.

2.3.2.2 Pre-existing triangulation

This section briefly summarizes the pre-existing implementation of TTK’s

triangulation data structure [TFL+
17]. Internally, each topological algo-

rithm implemented in TTK is exploiting this data-structure. In the fol-

lowing, the triangulation M is assumed to be of uniform top dimension,

i.e. any d′-simplex (with d′ ∈ {0, 1, . . . , d − 1}) admits at least one d-

dimensional co-face. In the explicit case (the input is a simplicial mesh),

this data structure takes as an input a pointer to an array of 3D points

(modeling the vertices of M), as well as a pointer to an array of indices

(modeling the d-simplices ofM). In the implicit case (the input is a regu-

lar grid), it takes as an input the origin of the grid as well as its resolution

and spacing across each dimension. These can be provided by any IO

library (in our experiments, these are provided by VTK).

Based on this input, the triangulation supports a variety of traversal

routines, to address the needs of the algorithms.

1. Simplex enumeration: for any d′ ∈ {0, . . . , d}, the data structure can

enumerate all the d′-simplices ofM.

2. Stars and links: for any d′ ∈ {0, . . . , d}, the data structure can enu-

merate all the simplices of the star and the link of any d′-simplex

σ.

3. Face / co-face: for any d′ ∈ {0, . . . , d}, the data structure can enumer-

2.3. Software environment 47

ate all the d′′-simplices τ which are faces or co-faces of a d′-simplex

σ, for any dimension d′′ (i.e. d′′ 6= d′ and d′′ ∈ {0, . . . , d}).

4. Boundary tests: d′ ∈ {0, . . . , d− 1}, the data structure can be queried

to determine if a d′-simplex σ is on the boundary ofM or not.

As discussed in the original paper [TFL+
17], such traversals are rather

typical of topological algorithms, which may need to inspect extensively

the local neighborhoods of simplices. All traversal queries (e.g. getting

the ith d′′-dimensional co-face of a given d′-simplex σ) are addressed by

the data structure in constant time, which is of paramount importance to

guarantee the runtime performance of the calling topological algorithms.

This is supported by the data structure via a preconditioning mechanism.

Specifically, in a pre-processing phase, each calling topological algorithm

needs to explicitly declare the list of the types of traversal queries it is

going to use during its main routine. This declaration will trigger a pre-

conditioning of the triangulation, which will pre-compute and cache all

the specified queries, whose results will later be addressed in constant

time at query time. This design philosophy is particularly relevant in the

context of analysis pipelines, where multiple algorithms are typically com-

bined together. There, the preconditioning phase only pre-computes the

information once (i.e. if it is not already available in cache). Thus, mul-

tiple algorithms can benefit from a common preconditioning of the data

structure. Moreover, another benefit of this strategy is that it adapts the

memory footprint of the data structure, based on the types of traversals

required by the calling algorithm.

In the specific case of regular grids, adjacency relations can be easily

inferred, given the regular pattern of the grid sampling (considering the

Freudenthal triangulation [Fre42, Kuh60] of the grid). Then, TTK’s tri-

angulation supports an implicit mode for regular grids: for such inputs,

the preconditioning does not store any information and the results of all

the queries are computed on-the-fly at runtime [TFL+
17]. An extension

to periodic grids (i.e. with periodic boundary conditions, for all dimen-

sions) is also implemented. The switch from one implementation to the

other (explicit mode for meshes or implicit mode for grids) is automati-

cally handled by TTK and developers of topological algorithms only need

to produce one implementation, interacting with TTK’s generic triangula-

tion data structure.

48 Chapter 2. Foundations

2.3.3 Existing TDA software frameworks

Numerous open-source software implementations exist to perform TDA

computations, however they often focus on a particular topological ab-

straction or narrowly defined set of methods, such as the computation

and study of persistent homology. The input may differ from one imple-

mentation to the next.

Some implementations focus on low-dimensional manifolds, study-

ing topological representations such as critical points, persistence dia-

grams or Morse-Smale Complexes. For example, Dillard’s library libtourtre

computes the contour tree [Dil07], and Doraiswamy et al.’s libRG library

[DN12a] and Recon [DN12b] as well as Tierny’s vtkReebGraph [TGSP09]

compute the Reeb graph. On the side of the Morse-Smale Complex com-

putation, Shivashankar and Natarajan developed a scriptable implemen-

tation for it [SN17] and Sousbie created DisPerSE, an implementation tai-

lored for cosmological data analysis [Sou11].

Other TDA softwares focus on the persistent homology of high-

dimensional point clouds. One of the earliest is Mapper [SMC07]. Diony-

sus2 [Mor17] and JavaPlex [TVJA14] implement the standard algorithm

nitroduced by Zomorodian and Carlsson [ZC05]. Perseus [Nan21] im-

plements a topology-preserving preprocessing procedure to reduce the

number of filtered input cells [MN12]. Bauer’s Ripser focuses on the

fast computation of persistent homology for the Vietoris-Rips filtration

[Bau19]. Gudhi [MBGY14] supports persistent homology on simplicial

complexes using the Simplex tree data structure [BM14]. Additional opera-

tions, such as statistical tools on the persistence, and data structures, such

as the Toplex Map, were later added to this project. PHAT [BKRW17] com-

putes efficiently persistent homology through the reduction of boundary

matrices.

Many of those TDA tools rely on custom file formats [Dil07, DN12b,

DN12a, Sou11, Nan21]. Though significant efforts were conducted to im-

prove the accessibility of several of the mentioned softwares by making

them accessible through Python (with Ripser.py [TSBO18] and PHAT.py

[Kel17]) or R packages [Fou] (with Gudhi, Dionysus2, and PHAT in Fasy

et al.’s TDA package [FKLM14]), most also require command-line usage or

programming knowledge, limiting accessibility for users without technical

backgrounds. Additionally, they often lack versatility in handling different

data types and dimensions. For example, the Morse-Smale complex im-

plementations by Shivashankar and Natarajan [SN17] are restricted to 2D

2.3. Software environment 49

triangulations or 3D regular grids. In contrast, TTK is built for seamless

integration, supporting dependency-free C++ code and accommodating

various data formats and dimensions. Its close integration with ParaView

also enables intuitive use by non-programmers. Furthermore, of the men-

tioned softwares, only Gudhi, PHAT and Dionysus2 are currently actively

maintained. In contrast to these three packages, TTK specifically targets

low dimensional (2D or 3D) domains for applications in scientific data

analysis and visualization and does not solely focus on the computation

of persistent homology.

2.3.4 Shared-memory parallelism for TDA

To improve the time efficiency of the algorithms computing the topo-

logical representations presented in Section 2.1, a significant effort has

been carried out to re-visit TDA algorithms for shared-memory paral-

lelism. Several authors focused on the shared-memory computation of

the persistence diagram [BKRW17, GVT23], others focused on the merge

and contour trees [MDN12, AN15, GFJT16, SM17, CWS+21, GFJT19a] or

the Reeb graph [GFJT19b], while several other approaches have been pro-

posed for the Morse-Smale complex [RWS11, SN12, GBP19]. Recently, a

localized approach based on shared-memory parallelism has been intro-

duced for the on-the-fly triangulation connectivity computation [LI24]. In

terms of TDA packages, many implement shared-memory parallelism on

some part of their code. Of the three packages still active, Gudhi and

PHAT support parallelism, either by implementing the parallelism within

the project or by relying on libraries that implement it. Dionysus2 does

not seem to offer parallelism.

In line with these developments, TTK has adopted shared-memory

parallelism, using OpenMP. It provides shared-memory parallel computa-

tions for various objects, including the following, non-exhaustive list: con-

tinuous scatterplots [BW08], data or geometry smoothing, dimensionality

reduction [DTS+20], fiber surfaces [KTCG17], Jacobi sets [EH04], manda-

tory critical points [GST14], marching tetrahedra, merge and contour

trees [GFJT19a, LWW+
23], merge tree distances and encoding [PVDT22,

WPTG23, PVT23, PT24], Morse-Smale complexes [TFL+
17], path compres-

sion [MLT+
23], persistence diagrams [GVT23], persistence diagram en-

coding [SDT24], Reeb graphs [GFJT19b], Reeb spaces [TC16], Rips com-

plexes, scalar field normalizer, topological compression [SPCT18b], topo-

50 Chapter 2. Foundations

logical simplification [TP12, LGMT20]. Some of those parallel implemen-

tations use OpenMP tasks, such as [GFJT19a, PVDT22, PVT23].

While the above parallel approaches succeed in improving computa-

tion times, they still require a shared-memory system, capable of storing

the entire input dataset into memory. Thus, when the size of the input

dataset exceeds the capacity of the main memory of a single computer,

distributed-memory approaches need to be considered. Moreover, pro-

vided that the performance of these distributed approaches scales with

the number of nodes, they also contribute to reducing computation times.

3A Software Framework for

Distributed Topological

Analysis Pipelines

Contents

3.1 Outline . 57

3.1.1 Related work for distributed-memory TDA methods . . . 57

3.1.2 Contributions . 59

3.2 Distributed Model . 60

3.2.1 Input distribution formalization 60

3.2.2 Output distribution formalization 62

3.2.3 Implementation specification 63

3.3 Distributed Triangulation . 64

3.3.1 Distributed explicit triangulation 65

3.3.2 Distributed implicit triangulation 67

3.3.3 Distributed implicit periodic triangulation 69

3.4 Distributed Pipeline . 70

3.4.1 Overview . 70

3.4.2 Infrastructure details . 72

3.5 Examples . 73

3.5.1 Algorithm taxonomy . 74

3.5.2 Hybrid MPI+thread strategy 76

3.5.3 Distributed algorithm examples 76

3.5.4 Integrated pipeline . 78

3.6 Results . 80

3.6.1 Distributed algorithms performance 81

53

54 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

3.6.2 Integrated pipeline performance 86

3.6.3 Limitations . 89

3.7 Summary . 90

This chapter presents the technical foundations for the extension of the

Topology ToolKit (TTK) to distributed-memory parallelism with MPI.

Most of TTK’s algorithms support shared-memory parallelism using mul-

tiple threads with OpenMP, however, TTK did not support, up to now,

distributed-memory parallelism and thus, was restricted to datasets of

limited size, fitting in the memory of a single computer. We address this

limitation in this chapter by extending TTK to distributed-memory paral-

lelism, an addition that also enables more performance and a faster execu-

tion. Furthermore, while several recent papers introduced topology-based

approaches for distributed-memory environments, these were reporting

experiments obtained with tailored, mono-algorithm implementations. In

contrast, we describe in this chapter a versatile approach (supporting both

triangulated domains and regular grids) for the support of topological

analysis pipelines, i.e., a sequence of topological algorithms interacting to-

gether, possibly on distinct numbers of processes. While developing this

extension, we faced several algorithmic and software engineering chal-

lenges, which we document in this chapter. Specifically, we describe an

MPI extension of TTK’s data structure for triangulation representation and

traversal, a central component to the global performance and generality of

TTK’s topological implementations. We also introduce an intermediate in-

terface between TTK and MPI, both at the global pipeline level, and at the

fine-grain algorithmic level. We provide a taxonomy for the distributed-

memory topological algorithms supported by TTK, depending on their

communication needs and provide examples of hybrid MPI+thread paral-

lelizations. Detailed performance analyses show that parallel efficiencies

range from 20% to 80% (depending on the algorithms), and that the MPI-

specific preconditioning introduced by our framework induces a negligi-

ble computation time overhead. We illustrate the new distributed-memory

capabilities of TTK with an example of advanced analysis pipeline, com-

bining multiple algorithms, run on the largest publicly available dataset

we have found (120 billion vertices) on a standard cluster with 64 nodes

(for a total of 1536 cores).

The work presented in this chapter has been published in the journal

IEEE Transactions on Visualization and Computer Graphics [LWG+
24]

55

and presented at the IEEE VIS 2024 conference. It was certified

replicable by the Graphics Replicability Stamp Initiative (http://www.

replicabilitystamp.org/). An example of use is available online (https:

//github.com/eve-le-guillou/TTK-MPI-at-example). Our implementa-

tion is integrated in TTK (starting version 1.2.0).

http://www.replicabilitystamp.org/
http://www.replicabilitystamp.org/
https://github.com/eve-le-guillou/TTK-MPI-at-example
https://github.com/eve-le-guillou/TTK-MPI-at-example

3.1. Outline 57

3.1 Outline

This chapter documents the technical foundations which are required for

the extension of TTK to distributed-memory parallelism using multiple

processes with MPI, hence enabling the design of topological pipelines

for the analysis of large-scale datasets on supercomputers. Specifically, af-

ter formalizing our conceptual model for the distributed representation of

the input and output data (Section 3.2), we present the extension of TTK’s

internal triangulation data-structure (a central component of its perfor-

mance and versatility) to the distributed setting (Section 3.3). We also

document an interface between TTK and MPI (Section 3.4) enabling the

consistent combination of multiple topological algorithms within a single,

distributed pipeline. Unlike previous work (Section 3.1.1), this chapter

does not focus on the distributed computation of a specific topological

object (such as merge trees or persistence diagrams). Instead, it docu-

ments the necessary building blocks for the extension to the distributed

setting of a diverse collection of topological algorithms such as TTK. To

evaluate the efficiency of our extension, we document several examples

(Section 3.5), extending to the distributed setting a selection of topological

algorithms. We also provide a taxonomy of TTK’s topological algorithms

(Section 3.5.1), depending on their communication needs and provide

examples of hybrid MPI+thread parallelizations for each category (Sec-

tion 3.5.3), with detailed performance analyses (Section 3.6.1). We illus-

trate the new distributed capabilities of TTK with an example of advanced

analysis pipeline (Section 3.5.4), combining multiple algorithms, run on a

dataset of 120 billion vertices distributed on 64 nodes (Section 3.6.2) of 24

cores each. This work has been integrated in the main source code of TTK

and is available in open-source.

3.1.1 Related work for distributed-memory TDA methods

Though numerous topological analysis methods have been adapted for

shared-memory parallelism (see Section 2.3.4), fewer approaches have

been documented for the computation of topological data representations

in a distributed-memory environment. This is partly because the algo-

rithmic advances in parallelism described for shared-memory approaches

do not directly translate to a distributed environment. Indeed, a key to

the performance of the shared-memory approaches discussed above is the

ability of a thread to access any arbitrary element in the input dataset. It

58 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

also allows for easily implementable and efficient dynamic load balancing

across threads.

In contrast, in a distributed setup, the initial per-process decompo-

sition of the input dataset is often a given, which the topological algo-

rithm cannot modify easily and which is likely to be unfavorable to its

performances. Moreover, since most topological algorithms need to con-

sider the input dataset in its globality, communications and synchroniza-

tions between processes have to be considered. However, these can be

highly unfavorable to the performances of the algorithm and should be

minimized. Then, existing efforts for distributing TDA approaches typ-

ically consist in first computing a local topological representation (i.e.

persistence diagram, contour tree, etc.) given the local block of input

dataset accessible to the process and then, in a second stage, to ag-

gregate the local representations into a common global representation

while attempting to minimize communications between processes (which

are much more costly than synchronizations in shared-memory paral-

lelism). Note that in several approaches [MW13, MW14, HKP+
21], the

final global representation may not be strictly equivalent to the output ob-

tained by a traditional sequential algorithm, but more to a distributed

representation, capable of supporting access queries by post-processing

algorithms in a distributed fashion. Following the above general strat-

egy, approaches have been documented for the distributed computation

of the persistence diagram [BKR14b] as well as the merge and contour

trees [PC04, MW13, MW14, NM19, WG21, HKP+
21, CRW22]. However,

these efforts focused on tailored implementations (i.e. supporting a sin-

gle algorithm, typically restricted to regular grids), which neither needed

to interact with other algorithms within a single analysis pipeline, nor to

support compatibility with outputs computed sequentially. For instance,

DIPHA [BKR14b] focuses on persistence diagram computation. For that,

it relies on a data representation based on the boundary matrix of the in-

put filtration, which is versatile, but at the expense of a potentially high

memory footprint. Moreover, this representation is not accompanied by

any mesh traversal functionality. Reeber [NM20, NM19] focuses on merge

tree computation. It is tailored for regular grids (with optional support

of adaptive mesh refinement via AMReX [ZAB+
19]) and its data struc-

ture only models vertex adjacency relations (which is the only traversal

functionality required for merge tree computation).

In contrast to mono-tailored implementations [NM20, NM19, BKR14b],

our work provides a data-structure (Section 3.3) which is versatile, com-

3.1. Outline 59

pact and time-efficient, flexible, and conducive to pipeline re-use (it con-

sistently maintains global indices for each simplex, irrespective of the

number of processes). A necessary building block for distributing TDA

algorithms is an infrastructure supporting a distributed access to the in-

put dataset. To support topological algorithms, a data structure must

be available to efficiently traverse the input dataset, with possibly ad-

vanced traversal queries. TTK [TFL+
17, BMBF+

19] implements such a

triangulation data structure, providing advanced, constant-time, traver-

sal queries, supporting both explicit meshes as well as the implicit tri-

angulation of regular grids (with no memory overhead). While several

data structures have been proposed for the distributed support of meshes

[EWS+10, ISSS16, ZAB+
19] (with a focus on simulation driven remesh-

ing), we consider in this work the distribution of TTK’s triangulation data

structure (Section 3.3), with a strong focus on traversal time efficiency and

compatibility with a non-distributed usage, to support post-processing in-

teractive sessions on a workstation (c.f. Section 3.2).

3.1.2 Contributions

This chapter makes the following new contributions.

1. An efficient, distributed triangulation data structure (Section 3.3): We

introduce an extension of TTK’s triangulation data structure for the

support of distributed datasets.

2. A software infrastructure for distributed topological pipelines (Section 3.4):

We document a software infrastructure consistently supporting ad-

vanced, distributed topological pipelines, consisting of multiple al-

gorithms, possibly run on a distinct number of processes.

3. Examples of distributed topological algorithms (Section 3.5): We pro-

vide a taxonomy of the algorithms supported by TTK, depending on

their communication needs, and document examples of distributed

parallelizations, with detailed performance analyses, following an

MPI+thread strategy. This includes an advanced pipeline consisting

of multiple algorithms, run on a dataset of 120 billion vertices on a

compute cluster with 64 nodes (1536 cores, total).

4. An open-source implementation: Our implementation is integrated in

TTK 1.2.0, to enable others to reproduce our results or extend TTK’s

distributed capabilities.

60 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

Figure 3.1 – The input data (a) is assumed to be loaded in the memory of np independent

processes in the form of np disjoint blocks of data ((b), one color per block, np = 4 in this

example). A layer of ghost simplices ((c), coming from adjacent blocks, matching colors)

is added to each block. This local data duplication ((d), transparent) eases subsequent

processing on block boundaries. A local adjacency graph is constructed to encode local

neighbor relations between blocks (e).

5. A reproducible example: We provide a reference Python script of one of

our advanced pipelines for replicating our results with a dataset size

that can be adjusted to fit the capacities of any system (publicly avail-

able at: https://github.com/eve-le-guillou/TTK-MPI-at-example).

3.2 Distributed Model

We now formalize our distributed model, which will eventually be used

as a blueprint to port the algorithms described above (Section 2.1) to dis-

tributed computations (Section 3.5).

3.2.1 Input distribution formalization

3.2.1.1 Decomposition

Our distributed-memory model is based the following convention. f is

assumed to be loaded in the memory of np processes in the form of np

disjoints blocks of data (Figure 3.1(a-b)). Specifically, each process p ∈
{0, . . . , np − 1} is associated with a local block fp :Mp → R, such that:

• Mp ⊂ M: each block Mp is a d-dimensional simplicial complex,

being a subset of the global inputM.

• Any simplex σ present in multiple blocks (e.g. at the boundary be-

tween adjacent blocks) is said to be exclusively owned, by convention,

by the process with the lowest identifier (among the processes con-

taining σ).

• A simplex σ ∈ Mp which is not exclusively owned by the process p

is called a ghost simplex (subsubsection 3.2.1.2).

https://github.com/eve-le-guillou/TTK-MPI-at-example

3.2. Distributed Model 61

• ∪Mp =M: the union of the blocks is equal to the input.

3.2.1.2 Ghost layer

In such a distributed setting, ghost simplices are typically considered, in

order to save communications between processes for local tasks. Ghost

simplices are typically simplices inside the block of a process that are

copies of the interfacing simplices of an adjacent block (see the lighter

simplices in Figure 3.1, (d)). We note M′
p the d-dimensional simplicial

complex obtained by considering a layer of ghost simplices, i.e. by adding

to Mp the d-simplices of M which share a face with a d-simplex of Mp,

along with all their d′-dimensional faces (with d′ ∈ {0, . . . , d− 1}). Overall,

all the simplices added in this way to the block Mp to form the ghosted

blockM′
p are ghost simplices (Figure 3.1(c-d)).

The usage of such a ghost layer is typically motivated in practice by

algorithms which perform local traversals (e.g. PL critical point extraction,

subsubsection 2.1.2.1). Then, when such algorithms reach the boundary

of a block, they can still perform their task without any communication,

thanks to the ghost layer. Also, the usage of a ghost layer facilitates the

identification of boundary simplices (i.e. located on the boundary of the

global domainM, see subsubsection 3.3.1.1).

The blocks are also positioned in relation to one another. Processes p

and q will be considered adjacent (Figure 3.1(e)) ifM′
p contains d-simplices

that are exclusively owned by q and if M′
q contains d-simplices that are

exclusively owned by p.

3.2.1.3 Global simplex identifiers

For any d′ ∈ {0, . . . , d}, each d′-simplex σj of each blockM′
p is associated

with a local identifier j ∈ [0, |M′d′
p | − 1]. This integer uniquely identifies σj

within the local blockM′
p.

The simplex σj is also associated with a global identifier φd′(j) ∈
[0, |Md′ | − 1], which uniquely identifies σj within the global dataset M.

Such a global identification is motivated by the need to support varying

numbers of processes. In particular, assume that a first analysis pipeline P1

(for instance extracting critical vertices, subsubsection 2.1.2.1) uses np(P1)

processes to generate an output (e.g. the list of critical vertices). Let us con-

sider now a second analysis pipeline P2 using np(P2) processes (possibly

on a different machine) to post-process the output of P1 (for instance, seed-

ing integral lines, subsubsection 3.5.3.5, at the previously extracted critical

62 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

vertices). Since np(P1) and np(P2) differ between the two sub-pipelines,

their input decompositions into local blocks will also differ. Then the local

identifiers of the critical vertices employed in P1 may no longer be usable

in P2. For instance, if np(P1) < np(P2), the local blocks of P2 may be much

smaller than those of P1 and the local identifiers of P1 can become out

of range in P2. Thus, a common ground between the two pipelines need

to be found to reliably exchange information, hence the global, unique

identifiers.

Note that the support for a varying number of processes is a neces-

sary feature for practical distributed topological algorithms. While it is a

challenging constraint (c.f. Section 3.3), it is beneficial to various appli-

cation use cases. For instance, P2 can be a post-processing pipeline run

on a workstation. P2 can also be executed on a different (possibly larger)

distributed-memory system than P1. Last, P1 and P2 can be part of a single,

large pipeline, which would include an aggregation step of the outputs of

P1 to a different number of processes (np(P2)).

3.2.1.4 Simplex-to-process maps

Each blockM′
p is associated with simplex-to-process maps, which map each

simplex to the identifier of the process which exclusively owns it.

3.2.2 Output distribution formalization

Topological algorithms typically consume an input (possibly complex), to

produce a (usually) simpler output (such as the topological representa-

tions described in Section 2.1). Moreover, multiple topological algorithms

can be combined sequentially to form an analysis pipeline. For instance,

a first algorithm A1 may compute integral lines (subsubsection 3.5.3.5) for

a first field f , while a second algorithm A2 may extract the critical ver-

tices (subsubsection 2.1.2.1) for a second field g, defined on the integral

lines generated by the first algorithm A1. Thus, the output produced by

a distributed topological algorithm A1 must be readily usable by another

distributed algorithm A2.

This implies that the output computed by a topological algorithm must

also strictly comply to the input specification (Section 3.2.1) and should

contain: (i) a ghost layer, (ii) global simplex identifiers, and (iii) simplex-

to-process maps.

Note that, according to this formalism, the output of a topological algo-

rithm is distributed among several processes. Depending on the complex-

3.2. Distributed Model 63

ity of this output, specialized manipulation algorithms (handling com-

munication between processes) may need to be later developed to exploit

them appropriately in a post-process.

3.2.3 Implementation specification

We now review the building blocks which are necessary to support the

distributed model specified in Secs. 3.2.1 and 3.2.2.

The pipeline combining the different topological algorithms can be en-

coded in the form of a Python script (c.f. contribution 5, Section 3.1.2).

The initial decomposition of the global domain M and the ghost layer

(specifically, the ghost vertices and the ghost d-simplices) are computed

by ParaView [AGL05]. Then, the TTK algorithms present in the pipeline

will be instantiated by ParaView on each process and from this point on,

they will be able to access their own local block of ghosted data and com-

municate with other processes.

While ParaView offers in principle the possibility to compute vertex-

to-process maps, we have observed several inconsistencies (in partic-

ular when using ghost layers), which prevented us to use it reliably.

This required us to develop our own process identification strategy (Sec-

tion 3.4.2).

Moreover, while ParaView also offers in principle the possibility to

generate global identifiers for vertices and cells (i.e. d-simplices), we have

experienced technical difficulties with it (such as a dependence of the re-

sulting identifiers on the number of processes), as well as issues which

made it unusable for large-scale datasets (such as an excessively large

memory footprint). This required us to develop our own strategy for the

global identification of vertices and cells (i.e. d-simplices), documented in

Secs. 3.3.1 and 3.3.2.

The input PL scalar field f is required to be injective on the vertices.

This can be easily obtained via lexicographic vertex comparison, by con-

sidering for each vertex v the tuple
(

f (v), φ0(v)
)
, i.e. the tuple formed

by its scalar value and its global identifier. In practice, to accelerate these

comparisons for local vertices (i.e. vertices present in a common block

M′
p), the process p will first sort all its local vertices (in lexicographic or-

der) in a preconditioning step, and local vertex comparisons will later be

based on their order in the sorted list.

Section 3.3 documents the extension of TTK’s triangulation data struc-

64 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

Figure 3.2 – Preconditioning of our distributed explicit triangulation. (a) Each process p

enumerates its number nvp of exclusively owned vertices and d-simplices. Next, an MPI

prefix sum provides a local offset for each process to generate global identifiers. (b) For

each process p, simplices of intermediate dimensions (edges (nep), triangles) are locally

enumerated for contiguous intervals of global identifiers of d-simplices (white numbers).

Next, all the intervals are sent to the process 0 which sorts them first by simplex-to-

process identifier, then by interval start, yielding a per-interval offset that each process

can use to generate its global identifiers (black numbers). (c) Within a given block, the

vertices at the boundary of the domainM are identified as non-ghost boundary vertices

(large spheres). Next, a simplex which only contains boundary vertices is considered

to be a boundary simplex (larger cylinders). (d) The global identifiers and boundary

information of the ghost simplices are retrieved through MPI communications with the

neighbor processes. The ghost simplices on the global boundary are flagged as boundary

simplices (larger spheres and cylinders).

ture to support our model of distributed input and output (Secs. 3.2.1 and

3.2.2).

Additional procedures easing the combination of multiple algorithms

into a single pipeline (adjacency graph computation, ghost data exchange)

are documented in Section 3.4.2.

3.3 Distributed Triangulation

This section describes the distributed extension of TTK’s triangulation

data structure (see subsubsection 2.3.2.2 for the initial triangulation de-

sign), later used by each topological algorithm. In the following, we

assume that the input block is loaded in the memory of the local pro-

cess p and ghosted (i.e. we consider the ghosted block M′
p, subsubsec-

tion 3.2.1.2). Moreover, we consider that, for each process p, a list of

neighbor processes is available (Figure 3.1(e)).

3.3. Distributed Triangulation 65

3.3.1 Distributed explicit triangulation

This section describes our distributed implementation of the TTK trian-

gulation in explicit mode, i.e. when an explicit simplicial complex is pro-

vided as a global input.

3.3.1.1 Distributed explicit preconditioning

The preconditioning of explicit triangulations in the distributed setting

involves the computation of four main pieces of information: (1) global

identifiers, (2) ghost global identifiers, (3) boundary, and (4) ghost bound-

ary.

(1) Global identifiers: The first step consists in determining global identi-

fiers for the vertices (i.e., the map φ0, Section 3.2.1, its inverse, φ−1
0). This

step is not optional and is triggered automatically. For each ghosted block

M′
p, the number nvp of non-ghost vertices that the block exclusively owns is

computed (Figure 3.2(a)). Next, an MPI prefix sum is performed to deter-

mine the offset that each block p should add to its local vertex identifiers

to obtain its global vertex identifiers. The map φd and its inverse φ−1
d are

computed similarly.

Next, global identifiers need to be computed for the d′-simplices of in-

termediate dimension (i.e. d′ ∈ {1, . . . , d − 1}, Figure 3.2(b))). This step

is optional and is only triggered if the calling algorithm pre-declared the

usage of these simplices in the preconditioning phase.

For this, each process p first identifies, among its list of exclusively

owned d-simplices, intervals of contiguous global identifiers. These are

typically interleaved with global identifiers of ghost d-simplices. Then, in-

tervals are processed independently via shared-memory parallelism, and

for each interval x, the d′-simplices are provided with a local identifier

(with the same procedure as used in the non-distributed setting). Given

a d′-simplex σ at the interface between two blocks (i.e. σ is a face of a

ghost d-simplex), a tie break strategy needs to be established, to guarantee

that only one process tries to generate an identifier for σ. Specifically, the

process p will generate an identifier for σ only if p is the lowest simplex-to-

process identifier among the exclusive owners of the d-simplices in St(σ)

(Section 3.2.1). Next, all the intervals (along with their simplex-to-process

identifier and number of d′-simplices) are sent to the process 0 which, after

ordering the intervals of d-simplices first by simplex-to-process identifier

then by local identifier, determines the offset that each interval x should

add to its local d′-simplex identifiers to obtain its global identifiers.

66 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

(2) Ghost global identifiers: The second step of the preconditioning con-

sists in retrieving for a given block M′
p the global identifiers of its ghost

0− and d−simplices. This step is not optional and is always triggered.

This feature can be particularly useful when performing local computa-

tions on the boundary of the block (e.g. discrete gradient, Section 3.5).

Once all the processes have established their vertex global identifiers, each

process p queries each of its neighbor processes j, to obtain the global

identifiers of its ghost vertices (a KD-tree data-structure is employed to

establish, with shared-memory parallelism, the correspondence between

vertices coming from different blocks). Once global vertex identifiers

are available for the ghost vertices of M′
p, a simpler exchange proce-

dure is used to collect the global identifiers of the ghost d′-simplices with

d′ ∈ {1, . . . , d} (the correspondence between d′-simplices coming from dif-

ferent blocks is established, with shared-memory parallelism, based on the

global identifiers of their vertices).

(3) Boundary: The third step consists in determining the simplices which

are on the boundary of the global domain M. This step is optional and

is only triggered (on a per simplex dimension basis) if the calling algo-

rithm pre-declared the usage of boundary simplices in the preconditioning

phase. This feature is particularly useful for algorithms which process as

special cases the simplices which are on the boundary of M (e.g. critical

point extraction, Section 3.5).

Each process p identifies the boundary vertices of its ghosted block M′
p

(See Figure 3.2(c)), with exactly the same procedure as the one used in

the non-distributed setting [TFL+
17]. Then, thanks to the ghost layer, it

is guaranteed that among the set of boundary vertices identified above,

the non-ghost vertices are indeed on the boundary of the global domain

M. Finally, a d′-simplex will be marked as a boundary simplex if all its

vertices are on the boundary ofM.

(4) Ghost boundary: Similarly to step (2), a final step of data exchange

between the process p and its neighbors enables the retrieval of the ghost

simplices ofM′
p which are also on the boundary (Figure 3.2(d)). This step

is optional and is only triggered if the calling algorithm pre-declared the

usage of boundary simplices in the preconditioning phase.

Finally, the preconditioning of any other traversal routine is identical

to the non-distributed setting.

3.3. Distributed Triangulation 67

3.3.1.2 Distributed explicit queries

In this section, we describe the implementation of the traversals of the

triangulation, as queried by a calling algorithm. This assumes that the

calling algorithm first called the appropriate preconditioning functions in

a pre-process.

The traversal of a local ghosted blockM′
p by an algorithm instantiated

on the process p is performed identically to the non-distributed setting,

with local simplex identifiers. This requires the calling algorithm to locally

translate input (and output) global simplex identifiers into local ones (i.e.

with the maps introduced in subsubsection 3.2.1.3).

3.3.2 Distributed implicit triangulation

This section describes our distributed implementation of the TTK triangu-

lation in implicit mode, i.e. when a regular grid is provided as a global

input. Then, as described below, most traversal information can be com-

puted on-the-fly at runtime, given the regular sampling pattern of the

Freudenthal triangulation [Fre42, Kuh60] of the input grid.

3.3.2.1 Distributed implicit preconditioning

In implicit mode, the preconditioning of the triangulation identifies the

position of the local ghosted grid M′
p within the global grid M, as de-

tailed in Figure 3.3. This step is not optional and is triggered automat-

ically. The preconditioning of any traversal routine returns immediately

without any processing (all queries are computed on-the-fly).

3.3.2.2 Distributed implicit queries

In this section, we describe the implementation of the traversals of the

triangulation, as queried by a calling algorithm.

The traversal of a local ghosted blockM′
p by an algorithm instantiated

on the process p is performed identically to the non-distributed setting,

with local simplex identifiers.

Similarly to the explicit case (subsubsection 3.3.1.2), the calling algo-

rithm must now translate input (and output) global simplex identifiers into

local ones (i.e. with the maps from subsubsection 3.2.1.3).

The important difference with the explicit mode is that all the infor-

mation computed in explicit preconditioning (i.e. (1) global identifiers, (2)

ghost global identifiers, (3) boundary, and (4) ghost boundary, see subsub-

68 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

Figure 3.3 – Preconditioning of our distributed implicit triangulation. (a) Each pro-

cess p computes (with shared-memory parallelism) the bounding box Bp of its ghosted

block M′
p. The vertex o, respectively O, is the origin of M′

p, respectively M, with

(X′o, Y′o, Z′o), respectively (X′O, Y′O, Z′O), its floating-point coordinates. The bounding

box B of M is computed (via MPI parallel reductions) from all the local Bp. (b) Two

key pieces of information are computed at this step: the dimensions of the global grid

(nX , nY, nZ) (the number of vertices of M in each direction) and the local grid offset

(Xo, Yo, Zo) (the global discrete coordinates of o). It is computed from (X′O, Y′O, Z′O),

(X′o, Y′o, Z′o) and the floating-point spacing of the grid (sx, sy, sz). Following that, each

process locally instantiates a global implicit triangulation model of M. (c) Given a lo-

cal vertex identifier, its global discrete coordinates (X, Y, Z) in M are inferred from its

local discrete point coordinates (x, y, z) (with x ∈ [0, nx − 1], y ∈ [0, ny − 1], and

z ∈ [0, nz − 1], nx, ny and nz being the number of vertices of the gridM′
p in each direc-

tion), and its local grid offsets. Next, its global identifier, φ0(v), is determined on-the-fly

by global row-major indexing. Bp

3.3. Distributed Triangulation 69

Figure 3.4 – Preconditioning of our distributed periodic implicit triangulation. This

triangulation type is handled similarly to the implicit case, but additional ghost simplices

need to be computed. Given a data block Mp ((a), orange), ParaView generates a first

layer of ghost d-simplices ((b), blue, grey, yellow). IfMp was located on the boundary of

the global gridM, periodic boundary conditions must be considered by adding an extra

layer of ghost d-simplices (arrows) for each periodic face ofM (c).

section 3.3.1.1) now needs to be computed on-the-fly at runtime (i.e. upon

the query of this information by the calling algorithm).

(1) Global identifiers: As detailed in Figure 3.3, given a local vertex v, its

global discrete coordinates (X, Y, Z) in the global grid M are inferred

from its local discrete point coordinates (x, y, z) in M′
p (Figure 3.3(c)),

and the local grid offset (Xo, Yo, Zo). From the coordinates (X, Y, Z), the

global identifier of v is computed on-the-fly with the procedure used in

the non-distributed setting [TFL+
17] (global row-major indexing). The

same procedure is used for d-simplices.

The global identifier of any d′-simplex (d′ ∈ {1, . . . , d− 1}) is computed by

identifying the d′-simplex in M which has the same global vertex identi-

fiers (via vertex star inspection).

(2) Ghost global identifiers: The global identifier of a ghost simplex is

also computed with the above procedure.

(3) Boundary: To decide if a given d′-simplex is on the boundary ofM, its

global identifier is first retrieved (above) and the local copy of the global

gridM is queried for boundary check based on this global identifier (with

the exact procedure used in the non-distributed setting [TFL+
17]).

(4) Ghost boundary: The boundary check for ghost simplices is also com-

puted with the above procedure.

3.3.3 Distributed implicit periodic triangulation

Periodic grids (with periodicity in all dimensions) are supported via im-

plicit Freudenthal triangulation [Fre42, Kuh60] like in the previous section.

However, the periodic boundaries require specific adjustments in terms of

preconditioning.

70 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

Since ParaView’s ghost cell generator only produces ghosts at the in-

terface of the domain of processes, an extra layer of ghost simplices needs

to be computed, as illustrated in Figure 3.4. Specifically, each process p

checks if its block M′
p is located on the boundary of the global grid M

(via bounding box comparison). If so, the list of periodic faces of the bound-

ing box B of M along which M′
p is located is identified (i.e. left, right,

bottom, top, front, back). This information is used to trigger exchanges of

data chunks, as illustrated in Figure 3.4(c), whose extent depends on the

periodic face type (corner, edge, face). Additionally, the local adjacency

graph is updated to account for blocks which are adjacent via the periodic

boundaries.

Similarly to Section 3.3.2, runtime queries are performed on each pro-

cess by querying the local copy of the global periodic triangulation M
(with the necessary local-to-global identifier translations).

3.4 Distributed Pipeline

This section provides an overview of the overall processing by TTK of a

distributed dataset. It documents the preconditioning steps handled by

the core infrastructure of TTK (beyond the triangulation handling, Sec-

tion 3.3) in order to complete the support of the distributed model speci-

fied in Section 3.2.

3.4.1 Overview

The input data is provided in the form of a distributed dataset (see Sec-

tion 3.2.1) loaded from a filesystem (e.g. PVTI file format) or provided

in-situ (e.g. with Catalyst). As shown in Figure 3.5, ParaView’s execution

flow enters TTK via the function ProcessRequest, which triggers TTK’s

preconditioning, including the Distributed Pipeline Preconditioning (specific

to the distributed mode, top yellow frame) prior to the traditional, local

preconditioning (middle yellow frame) and finally the implementation of

the topological algorithm (bottom yellow frame). In the following, we

describe the Distributed Pipeline Preconditioning.

(1) Ghost layer generation: if the local data block does not include any

ghost cells, the ghost layer generation algorithm (implemented by Par-

aView) is automatically triggered. This step is omitted if a valid ghost

layer is already present.

(2) Local adjacency graph (LAG) initialization: An estimation of the local

3.4. Distributed Pipeline 71

Figure 3.5 – Overview of the overall pipeline upon the the delivery of a data blockMp by

ParaView (top). A step of pipeline preconditioning specialized for the distributed setting

(top yellow frame) is automatically triggered before calling the actual implementation of

the topological algorithm. Note that each preconditioning phase is only triggered if the

corresponding information has not been cached yet. Then, for practical pipelines, the

preconditioning typically only occurs before the first algorithm of the pipeline.

72 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

adjacency graph (i.e. connecting the data block to its neighbors) is con-

structed. This step (described in Section 3.4.2) is omitted if a valid LAG is

already present.

(3) Triangulation instantiation: this step instantiates a new TTK triangu-

lation data structure (Section 3.3). This step is omitted if a valid triangu-

lation is already present.

(4) Simplex-to-process map generation: this step computes the simplex-

to-process identifier for each simplex (as specified in Section 3.2.1). This

step (described in Section 3.4.2) is omitted if valid simplex-to-process

maps are already present.

(5) Ghost data exchange: this step computes for each neighbor process q

the list of vertices or cells exclusively owned by it, and which are ghosts

in the process p. This step (described in Section 3.4.2) is optional and is

only triggered if the calling algorithm pre-declared its usage at precondi-

tioning.

After these steps, the traditional TTK preconditioning is executed

(middle yellow frame, Figure 3.5).

3.4.2 Infrastructure details

This section describes the implementation of the pipeline preconditioning

mentioned in the above overview (Section 3.4.1), specifically, the routines

which are not directly related to the distributed triangulation (which has

been covered in Section 3.3).

Local adjacency graph (LAG) initialization: Given a ghosted block M′
p,

the goal of this step is to store a list of processes, which are responsible for

the blocks adjacent to M′
p (Figure 3.1(e)). First, each process p computes

the bounding box Bp of its ghosted block M′
p. Next, all processes ex-

change their bounding boxes. Finally, each process p can initialize a list of

neighbor processes by collecting the processes whose bounding box inter-

sects with Bp. This first estimation of the LAG will be refined (next para-

graph) after the generation of the simplex-to-process identifiers (which is

relevant in the case of explicitly triangulated domains).

Simplex-to-process map generation: As specified in Section 3.2.1, each

simplex is associated to the identifier of the process which exclusively

owns it. This convenience feature can be particularly useful to quickly

identify where to continue a local processing when reaching the boundary

of a block (e.g. integral lines, subsubsection 3.5.3.5).

Each vertex v ∈ M′
p is classified by ParaView as ghost or non-ghost. For

3.5. Examples 73

each non-ghost vertex v, we set its simplex-to-process identifier to p. Then,

the ghost global identifier list is computed (it contains the global identifiers

of all the ghost vertices of M′
p). Next, this list is sent to each process q

marked as being adjacent in the LAG (previous paragraph). Then, the pro-

cess q will return its identifier (q) and the subset of the ghost global identifier

list, corresponding to non-ghost vertices inM′
q. Finally, the process p will

set the simplex-to-process identifier of v to q, for each vertex v returned by

q. The procedure for the d-simplices is identical. The simplex-to-process

maps for the simplices of intermediate dimensions are inferred from these

of the d-simplices, as specified in Section 3.2.1. Following the generation

of the simplex-to-process maps, the LAG is updated, by only consider-

ing the block p and q as neighbors if p contains ghost vertices which are

exclusively owned by q and reciprocally.

In implicit mode, the preconditioning of the simplex-to-process map

generation is limited to the computation of discrete bounding boxes (i.e.

expressed in terms of global discrete coordinates) for the non-ghosted

block Mp. The bounding boxes are then exchanged between neighbor-

ing processes. Then, the simplex-to-process maps are inferred on-the-fly,

at query-time, from the discrete bounding boxes.

Ghost data exchange: In many scenarios, it may be desirable to update

the data attached to the ghost simplices of a given blockM′
p. For instance,

when considering smoothing (subsubsection 3.5.3.4), at each iteration, the

process p needs to retrieve the new, smoothed f data values for its ghost

vertices, prior to the next smoothing iteration. We implement this task

in TTK as a simple convenience function. First, using the list of neigh-

bors (collected from the LAG), the process p will, for each neighbor pro-

cess q, send the global identifiers of the simplices which are ghost for p

and owned by q (using their simplex-to-process maps). This is computed

once, in an optional preconditioning step (step 5, Section 3.4.1). This list

of ghost vertex identifiers is cached in q and used at runtime, when neces-

sary, to send to p the updated values (exchange data buffers are updated

with shared-memory parallelism). A similar procedure is available for

d-simplices.

3.5 Examples

Secs. 3.3 and 3.4 documented the implementation of the distributed model

specified in Section 3.2. In this section, we now describe how to make

use of this model to extend topological algorithms to the distributed set-

74 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

ting. Specifically, we will mostly focus on the algorithms described in

Section 2.1.

3.5.1 Algorithm taxonomy

In this section, we present a taxonomy of the topological algorithms imple-

mented in TTK, based on their needs of communications on distributed-

memory architectures.

(1) No Communication (NC): This category includes algorithms for which

processes do not need to communicate with each other to complete their

computation. This is the simplest form of algorithms and the easiest to

extend to a distributed setting. Such algorithms are often referred to as

embarrassingly parallel. In TTK, this includes algorithms performing local

operations and generating a local output, e.g.: critical point classification

subsubsection 2.1.2.1, discrete gradient computation subsubsection 2.1.2.3,

Jacobi set extraction [EH04], Fiber surface computation [KTCG17] and

marching tetrahedra.

(2) Data-Independent Communications (DIC): This category includes al-

gorithms for which processes do need to communicate with each other,

but at predictable stages of the algorithm, with a predictable set of pro-

cesses and communication volume, independently of the data values. This

typically corresponds to algorithms performing a local operation on their

block that need intermediate results from adjacent blocks to finalize their

computation. In TTK, this includes for instance: data normalization, data

or geometry smoothing (Section 3.5.3), or continuous scatter plots [BW08].

(3) Data-Dependent Communications (DDC): This category includes al-

gorithms which do not fall within the previous categories, i.e. for which

communications can occur at unpredictable stages of the algorithm, with

an unpredictable set of processes or communication volume, depending

on the data values. This is the most difficult category of algorithms to

extend to the distributed setting, since an efficient port would require a

complete re-design of the algorithm. Unfortunately, we conjecture that

most topological algorithms fall into that category. In TTK, this includes

for instance: integral lines (subsubsection 2.1.2.2), persistence diagrams

[GVT23], merge and contour trees [GFJT19a], path compression [MLT+
23],

Reeb graphs [GFJT19b], Morse-Smale complexes [TFL+
17], Rips com-

plexes, topological simplification [TP12, LGMT20], Reeb spaces [TC16],

etc.

3.5. Examples 75

Figure 3.6 – Examples of topological algorithm modifications for the support of dis-

tributed memory computation. (a) Scalar Field Critical Points (NC): Critical points are

generated similarly to the sequential mode. Upper and lower links (+ and − signs in the

figure) of non-ghost vertices on the boundary of Mp are computed using ghost vertices

(here in yellow). (b) Discrete Gradient (NC): Similarly to (a), this algorithm processes

each vertex of the domain independently. For each non-ghost vertex on the boundary of

Mp, the lower link computation can rely on ghost vertices. Critical simplices are rep-

resented by bigger spheres. (c) Scalar Field Smoother (DIC): This procedure smooths a

scalar field f by local averaging for a user-defined number of iterations. The values of

ghost vertices (in yellow) will need to be updated after each iteration. (d) and (e) Integral

Lines (DDC): (e) each process will compute the integral lines whose seeds lie within its

blockMp. Then either the integral line reaches its final vertex withinMp, completing

the computation, or the integral line reaches a vertex outside of Mp (here in yellow in

(d)). In the latter case, the integral line data is stored to be sent later to the yellow process.

Once all the work is done on all processes, they exchange the data of incomplete integral

lines and resume the computation of the integral lines on their block. The computation

stops when all integral lines have completed.

76 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

3.5.2 Hybrid MPI+thread strategy

As mentioned in Section 2.2.3, using an MPI+thread strategy can improve

performance compared to a pure MPI configuration thanks to fewer MPI

communications (due to fewer MPI processes) and to a (better) dynamic

load balancing among threads within each MPI process. The overall mem-

ory footprint is also lower with the hybrid strategy, since using fewer MPI

processes implies fewer ghost simplices and less data duplication.

Regarding the MPI+thread strategy and the port examples described

in Section 3.5.3, we rely in TTK on the MPI_THREAD_FUNNELED thread

support level in MPI [Mes23]. According to this level of thread support,

only the master (i.e. original) thread can issue calls to MPI routines. In

each port example, within each MPI process, the communication steps

(if any) are thus performed in serial whereas the computation steps are

multi-threaded, using the OpenMP implementations already available in

TTK.

3.5.3 Distributed algorithm examples

We now illustrate the taxonomy of Section 3.5.1 by describing the

distributed-memory parallelization of algorithms belonging to each of the

categories, while exploiting the distributed model we introduced (Sec-

tion 3.2).

3.5.3.1 NC: Scalar Field Critical Points

This algorithm processes each vertex v of the domain independently and

performs the classification presented in subsubsection 2.1.2.1. Since it pro-

cesses a local piece of data (the lower and upper links Lk−(v) and Lk+(v))

and that it generates a localized output (a list of critical points for the local

block), it does not require any communication (Figure 3.6(a)). Thus, it is

classified in the category NC of the above taxonomy. To port this embar-

rassingly parallel algorithm to the distributed setting, two modifications

are required. First, the algorithm does not classify ghost vertices (which

will be classified by other processes). Second, to fulfill the distributed

output specification (Section 3.2.2), each output critical point is associated

with its global vertex identifier (instead of its local one).

3.5. Examples 77

3.5.3.2 NC: Discrete Gradient

Similarly to the previous case, this algorithm processes each vertex v of the

domain independently. Specifically, it generates discrete vectors for the

lower star St−(v) and the simplices which are assigned to no discrete vec-

tors are stored as critical simplices (subsubsection 2.1.2.3). Similarly to the

previous case, this algorithm only requires local data and only produces

local outputs, without needing communications (hence its NC classifica-

tion) (Figure 3.6 (b)). The port of this embarrassingly parallel algorithm

requires two modifications. First, only the vertices which are exclusively

owned by the current process (Section 3.2.1) are processed. The gradient

for ghost vertices, and the simplices in their lower links, is not computed.

Second, similarly to the previous case, the simplex identifiers associated

with the discrete vectors and critical simplices are expressed with global

identifiers (instead of local ones).

3.5.3.3 DIC: Scalar Field Normalizer

This procedure normalizes an input scalar field f to the range [0, 1]. It

is divided into two steps. First, each process computes its local extreme

values and all processes exchange their extreme values to determine the

values fmin and fmax for the entire domainM using MPI collective commu-

nications. Second, all data values are normalized independently, based on

fmin and fmax. The first step of the algorithm requires inter-process com-

munications in a way which is predictable and independent of the actual

data values (hence its DIC classification in the taxonomy).

3.5.3.4 DIC: Scalar Field Smoother

This procedure smooths a scalar field f by local averaging (i.e. by re-

placing f (v) with the average data values on the vertices of St(v)). This

averaging procedure is typically iterated for a user-defined number of it-

erations. However, at a given iteration, in order to guarantee a correct

result for each vertex v located on the boundary of the local block (i.e. v is

a non-ghost vertex adjacent to ghost-vertices), the updated f values from

the previous iteration need to be retrieved for each of its ghost neighbors

(Figure 3.6(c)). Thus, at the end of each iteration, each process p needs

to communicate with its neighbors to retrieve the smoothed values for its

ghost vertices, which is achieved by using the generic ghost data exchange

procedure described in Section 3.4.2 (hence the DIC classification for this

algorithm).

78 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

3.5.3.5 DDC: Integral lines

Unlike the previous cases, the port of this algorithm requires quite exten-

sive modifications. The first step is similar to its sequential version (Sec

2.1.2.2): each process p will compute the integral lines whose seeds lie

within its block Mp (each seed is processed independently via shared-

memory parallelism with OpenMP). Moreover, the process p will be

marked as the exclusive owner of the part of the integral line (i.e. the

vertices and edges of the sub-geometry) created on its block. From there,

two possibilities arise: either the integral line reaches its final vertex within

Mp, completing the computation, or the integral line reaches a ghost ver-

tex owned by another process q and is incomplete. In the latter case, some

of the integral line data (such as global identifier, the distance from the

seed or the global identifier of the seed) is stored in a vector to be sent

later to the process q (Figure 3.6(d) and (e)). Once all integral lines on

all processes are marked as either complete or incomplete, all processes

exchange the data of their incomplete integral lines and use that data to

resume computation of the integral lines on their block.

These computation and communication steps are run until all integral

lines on all processes are completed. Consequently, depending on the

dataset, and the process, there may be very little communication, e.g. if all

the integral lines lie within the bounds of a block, or a lot of communica-

tions, e.g. if some integral lines are defined across the blocks of multiple

processes (hence its DDC classification).

3.5.4 Integrated pipeline

In this section, we describe an integrated pipeline that produces a real-

life use case combining all the the port examples presented in Sec.3.5.3.

All of the algorithms, their order as well as their input are described in

Table 3.1. The input dataset is a three-dimensional regular grid with two

scalar fields f , the electronic density in the Adenine Thymine complex (AT)

and its gradient magnitude |∇ f |. First, f and |∇ f | are smoothed and

f is normalized. Critical points of f are computed and used as seeds

to compute integral lines of f . The extracted integral lines capture the

covalent and hydrogen bonds within the molecule complex (Figure 3.7).

Then, critical points are computed for |∇ f | on the integral lines. The

extracted critical points indicate locations of covalent bonds where the

electronic density experiences rapid changes, indicating transition points

occurring within the bond (Figure 3.7).

3.5. Examples 79

Figure 3.7 – Output of the integrated pipeline on the AT dataset, a three-dimensional reg-

ular grid of the electronic density (and its gradient magnitude) in the Adenine Thymine

complex (AT). The extracted integral lines capture the covalent and hydrogen bonds

within the molecule complex. The transparent spheres are the critical points used as

seeds of the integral lines while the full spheres are the critical points of |∇ f | and show

where the electronic density experiences rapid changes, indicating transition points oc-

curring within the bond. This image was obtained by resampling the original dataset to

20483 and executing the integrated pipeline on 64 nodes of 24 cores each (1536 cores) on

MeSU-beta.

Abbreviation Algorithm Input

1. SFS1 ScalarFieldSmoother f

2. SFS2 ScalarFieldSmoother |∇ f |
3. SFN1 ScalarFieldNormalizer fSFS1

4. AP ArrayPreconditioning fSFN1

5. SFCP1 ScalarFieldCriticalPoints fAP

6. IL IntegralLines
fAP (domain),

fSFCP1 (seeds)

7. GS GeometrySmoother f IL

8. SFCP2 ScalarFieldCriticalPoints |∇ f |SFS2 onMGS

Table 3.1 – Composition of the integrated pipeline. Each line denotes an algorithm in the

pipeline, by order of appearance (top to bottom), as well as its input. f is the input scalar

field. Each algorithm modifies the scalar field: fA is the modified scalar field f , output of

algorithm A. MGS is the output domain of GeometrySmoother.

80 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

The local order of f is required by two algorithms: the first critical

points (SFCP1) and the integral lines (IL). Since these two algorithms are

separate leaves of the pipeline, each of them would trigger the automatic

local order computation. Instead, to avoid this duplicated computation,

we manually call the local order computation in a preprocess (i.e. by

calling the ArrayPreconditioning algorithm).

The chosen dataset is intentionally quite small (177× 95× 48) to ensure

reproducibility. It is resampled before the pipeline to create a more sizable

example, using ParaView’s ResampleToImage feature (i.e. grid resampling

via trilinear interpolation). Anyone can execute this pipeline to the best

of their resources, by choosing the appropriate resampling dimensions. In

our case, the new dataset is of dimensions (20483), encompassing roughly

8.5 billion vertices.

The pipeline was also run on a second, larger, dataset (Turbulent Chan-

nel Flow), to show TTK’s capability to handle massive datasets (specifically,

the largest publicly available dataset we have found). This dataset repre-

sents a three dimensional pressure field of a direct numerical simulation

of a fully developed flow at different Reynolds numbers in a plane chan-

nel (obtained from the Open Scientific Visualization Datasets [Kla20]). Its

dimensions are (10240× 7680× 1536), which is approximately 120 billion

vertices. Before applying the pipeline, the gradient magnitude is com-

puted and added to the dataset, and the result is converted using single-

precision floating-point numbers (thereby reducing memory consumption

at runtime).

3.6 Results

For the following results, we rely on Sorbonne Université’s supercom-

puter, MeSU-beta. MeSU-beta is a compute cluster with 144 nodes of 24

cores each (totaling 3456 cores). Its nodes are composed of 2 Intel Xeon

E5-2670v3 (2.7 GHz, 12 cores), with SMT (simultaneous multithreading)

disabled (i.e. running 1 thread per core), and with 128GB of memory each.

The nodes are interconnect with Mellanox Infiniband.

When measuring the performance of a specific algorithm, only the ex-

ecution of the algorithm itself is timed. None of the preconditioning or

input and output formatting is timed unless explicitly stated. The precon-

ditioning steps are an investment in time: they can be used again by other

algorithms later on in the pipeline, thus, including the cost of these steps

in the execution time of a single algorithm would not provide an accurate

3.6. Results 81

24(1) 48(2) 96(4) 192(8) 384(16)
0

20

40

60

80

100

Cores(Nodes)

E
�
c
ie
n
c
y

Pure MPI

24(1) 48(2) 96(4) 192(8) 384(16)
0

20

40

60

80

100

Cores(Nodes)

MPI+thread

wavelet

elevation

isabel

random

backpack

Figure 3.8 – Strong scaling efficiencies for the Integral line computation algorithm with

500, 000 seeds, randomly distributed on all processes, using the pure MPI strategy (left)

and the MPI+thread one (right) with 1 MPI process and 24 threads per node. The

MPI+thread strategy is significantly more efficient than the pure MPI one.

representation of performance in a more complicated pipeline. They are

therefore excluded from the individual benchmarks (Section 3.6.1) but in-

cluded in the study of the global, integrated pipeline Section 3.6.2 (which

is timed using ParaView’s internal timer).

The benchmark is performed on five different datasets: Wavelet, Eleva-

tion, Isabel, Random and Backpack. The datasets all originate from publicly

available repositories [Kla20, TTK20]. See Appendix A for more details on

the datasets used in this chapter.

3.6.1 Distributed algorithms performance

This section evaluates the practical performance of the extension to the dis-

tributed setting (Section 3.5.3) of the algorithms presented in Section 2.1,

by considering strong and weak scaling.

3.6.1.1 Strong scaling

For a given problem size, we first evaluate the runtime performance of our

novel framework for distributed computations in TTK, as more computa-

tional resources are available. For this, we conduct a strong scaling anal-

ysis with results shown in terms of parallel efficiency (see Section 2.2.6).

Each dataset is resampled to 5123 via trilinear interpolation.

We first compare the pure MPI and the MPI+thread strategies (Sec-

tion 3.5.2). Regarding the MPI+thread strategy, we rely on one MPI pro-

cess per node (and 24 threads within) instead of one MPI process per

processor (and 12 threads each). According to performance tests (not

82 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

24(1) 48(2) 96(4) 192(8) 384(16)
0

20

40

60

80

100

Cores(Nodes)

E
�
c
ie
n
c
y

ScalarFieldCriticalPoints

24(1) 48(2) 96(4) 192(8) 384(16)
0

20

40

60

80

100

Cores(Nodes)

DiscreteGradient

24(1) 48(2) 96(4) 192(8) 384(16)
0

20

40

60

80

100

Cores(Nodes)

ScalarFieldSmoother

wavelet

elevation

isabel

random

backpack

Figure 3.9 – Strong scaling efficiencies for various algorithms (MPI+thread: 1 MPI

process and 24 threads per node).

24(1) 48(2) 96(4) 192(8) 384(16)

101

102

Cores(Nodes)

E
x
e
c
u
ti
o
n
T
im

e
(s
)

ScalarFieldCriticalPoints

24(1) 48(2) 96(4) 192(8) 384(16)

101

102

Cores(Nodes)

DiscreteGradient

24(1) 48(2) 96(4) 192(8) 384(16)

100

101

102

Cores(Nodes)

E
x
e
c
u
ti
o
n
T
im

e
(s
)

ScalarFieldSmoother

24(1) 48(2) 96(4) 192(8) 384(16)

10−1

100

101

102

Cores(Nodes)

IntegralLines

wavelet

elevation

isabel

random

backpack

Figure 3.10 – Strong scaling (execution times) for various algorithms (MPI+thread: 1

MPI process and 24 threads per node). The dotted lines indicate ideal performances.

3.6. Results 83

shown here), both options lead indeed to similar performance results, ex-

cept when using one single node: in this case, having one single MPI

process (no communication and no ghost simplices required) is more ef-

ficient than two. Having one MPI process per node also leads to a lower

memory usage.

As shown in Figure 3.8, using MPI+thread (with one MPI process and

24 threads per node) is then substantially more efficient than using a pure

MPI design for the integral line algorithm, for all datasets except the Ran-

dom dataset. More precisely, even for MPI+thread, the efficiency decreases

with the number of cores and depends significantly on the dataset. This

is due to a strong workload imbalance between the processes: the integral

lines are not evenly distributed on the MPI processes which can lead to

long idle periods for some processes (waiting for the other to process their

integral lines). This applies to the Backpack dataset for example. Regarding

the Elevation dataset (very smooth, with only one maximum and one min-

imum) or the Isabel one (very smooth too), the generated integral lines are

here especially lengthy and span several (but not all) processes, leading

to low efficiencies. On the contrary the Random dataset is very balanced,

but is also very noisy, leading to very short integral lines: for the same

number of integral lines, the computation times are much shorter than for

the other datasets which makes the communication cost more detrimental

to performance. Finally, the Wavelet dataset is the most balanced one, with

long enough integral lines, and thus shows the best performance results.

Compared to the pure MPI strategy, the MPI+thread one benefits from

fewer MPI processes and therefore from a lower load imbalance. See Ap-

pendix B for an additional comparison of different MPI+thread strategies,

namely: 2× 12, and 1× 24 as well as a pure MPI one.

The performance results for the other distributed algorithms can be

found in Figs 3.9 (efficiency) and 3.10 (execution time). For the ScalarField-

CriticalPoints, a very good efficiency (80%) is achieved (which is compara-

ble to its shared-memory parallel implementation on one node, 90%), with

little dependence on the dataset. The DiscreteGradient likewise performs

very well in terms of efficiency, albeit slightly less, due to the paralleliza-

tion method of the algorithm, for which adding ghost simplices will add

a small amount of extra work in parallel. These two algorithms strongly

benefit from parallel computing, even when using hundreds of cores. The

ScalarFieldSmoother exhibits lower efficiency. This can be explained by the

need for communications at each iteration, as well as by the low cost of

the smoothing process (which is a simple averaging operation). Indeed,

84 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

the faster a computation, the stronger the impact of communications on

the overall performance.

Finally we emphasize that, at the exception of IntegralLines (for which

we derived a new implementation, subsubsection 3.5.3.5), shared-memory

parallel implementations of these algorithms (using OpenMP threads) pre-

existed in TTK prior to this work. In our MPI+thread strategy, we lever-

age these same shared-memory parallel implementations regarding multi-

thread parallelism. Moreover when using only one MPI process, MPI com-

munications are not triggered and processing specific to the distributed

setting (e.g. on ghost simplices) is not carried out. Thus, when running

our novel MPI+thread extension of these algorithms on only one MPI

process, performances are identical to these of the pre-existing, shared-

memory-only implementations.

3.6.1.2 Communication thread trial

We have tried to improve the parallel efficiencies of the integral line algo-

rithm, by dedicating a thread to MPI communications (See Section 2.2.3).

Thanks to this thread, an incomplete integral line is sent right away, with-

out waiting for all integral lines on the process to be computed. Each

process also continuously receives integral lines and adds them immedi-

ately to the pool of integral lines to be computed.

Performance results showed an overall similar efficiency for both im-

plementations (with and without a communication thread). Further test-

ing provided clarification regarding the underlying factors contributing

to this outcome. Without communication thread, processes spend time

waiting at synchronization steps. This idle time should be reduced by

adding a communication thread. However, processes often wait for the

same process that almost always performs the most work of a computa-

tion step. That particular process does not spend a lot of time waiting

at synchronization steps as it most often arrives last. Therefore, adding

a communication thread does not significantly help speed up the compu-

tation of that process. In fact, the time gained with the added reactivity

just only compensates the loss of a computation thread (that was turned

into a communication thread). The real problem here is the workload

imbalance between processes, resulting in equivalent efficiency with or

without a communication thread. Furthermore, this design based on a

communication thread adds a significant amount of complexity to the im-

plementation (due to the required thread synchronizations). As a result,

3.6. Results 85

we do not rely on this communication thread design in our distributed

integral lines implementation.

3.6.1.3 Weak scaling

Next, we evaluate, the ability of our framework to process datasets of in-

creasing sizes. For this, we conduct a weak scaling analysis, with results

shown in terms of parallel efficiency (see Section 2.2.6). The datasets have

been resampled to 5123 on one node. For ScalarFieldCriticalPoints, Discrete-

Gradient, and ScalarFieldSmoother, the input size is increased by doubling

the number of samples, one dimension at a time. For IntegralLines, the

workload is increased by doubling the number of seeds at each iteration.

This choice was made as doubling the size of the input does not double

the workload. Indeed, increasing the sampling rate creates artifacts that

produce critical points that cut short integral lines.

As shown in Figs. 3.11 (efficiency) and 3.12 (execution time), for

the ScalarFieldCriticalPoints and the DiscreteGradient, the efficiency remains

quite high as the amount of work and the number of cores double: this

is close to the ideal performance. Therefore, the conclusions are the same

as for the strong scaling study: the performance is very good on all data

sets, slightly less for the DiscreteGradient than the ScalarFieldCriticalPoints.

For the ScalarFieldSmoother, the weak scaling shows that after the first drop

of performance from one to two processes, due to synchronizations and

communications that do not occur on one node, the computation actually

scales really well, with a nearly constant efficiency on more than one node.

For the IntegralLines, the datasets Backpack, Elevation and Isabel show

degraded performance similarly to the strong scaling. However, the re-

sults for the Wavelet and Random stay much closer to the ideal than for the

strong scaling study. This can be explained by two factors. First, unlike the

case of the strong scaling study, the number of seeds per node in the weak

study is constant and does not decrease. Hence, the workload imbalance

has a smaller impact and does not deteriorate the performance as much.

Second, it is likely that the workload for the strong scaling study becomes

too small as the number of cores increases. This makes the relative cost of

communications and synchronizations very important.

Overall, this weak scaling analysis shows that, for ScalarFieldCritical-

Points and DiscreteGradient, the weak scaling is close to ideal (i.e. a prob-

lem of growing size can be processed in constant time when increasing

accordingly the number of cores). For ScalarFieldSmoother, after a first

86 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

24(1) 48(2) 96(4) 192(8) 384(16)
0

20

40

60

80

100

Cores(Nodes)

E
�
c
ie
n
c
y

ScalarFieldCriticalPoints

24(1) 48(2) 96(4) 192(8) 384(16)
0

20

40

60

80

100

Cores(Nodes)

DiscreteGradient

24(1) 48(2) 96(4) 192(8) 384(16)
0

20

40

60

80

100

Cores(Nodes)

E
�
c
ie
n
c
y

ScalarFieldSmoother

24(1) 48(2) 96(4) 192(8) 384(16)
0

20

40

60

80

100

Cores(Nodes)

IntegralLines

wavelet

elevation

isabel

random

backpack

Figure 3.11 – Weak scaling efficiencies for various algorithms (MPI+thread: 1 MPI

process and 24 threads per node)

degradation due to inter-process synchronization and communication, the

efficiency is nearly constant. Finally, weak scaling performances are de-

graded overall for IntegralLines, at the exception of well balanced datasets

that show much better performance than in the strong scaling study.

3.6.2 Integrated pipeline performance

We now present experimental results for the integrated pipeline (Sec-

tion 3.5.4), which exemplifies a real-life use case combining all of the port

examples described in Section 3.5.3, on datasets which were too large (8.5

and 120 billion vertices, Section 3.5.4) to be handled by TTK prior to this

work.

The results for the integrated pipeline are twofold: an output image

(Figure 3.7 and Figure 3.14) and the time profiling of the pipeline (Fig-

ure 3.13). The image is produced using offscreen rendering with OSMesa

on our supercomputer. Profiling is done using both Paraview’s timer (av-

erage, minimum and maximum computation times across processes, for

an overall algorithm, preconditioning included) and the TTK timer de-

3.6. Results 87

24(1) 48(2) 96(4) 192(8) 384(16)
101

101.5

102

Cores(Nodes)

E
x
e
c
u
ti
o
n
T
im

e
(s
)

ScalarFieldCriticalPoints

24(1) 48(2) 96(4) 192(8) 384(16)
101

101.5

102

Cores(Nodes)

DiscreteGradient

24(1) 48(2) 96(4) 192(8) 384(16)
101

101.5

102

Cores(Nodes)

E
x
e
c
u
ti
o
n
T
im

e
(s
)

ScalarFieldSmoother

24(1) 48(2) 96(4) 192(8) 384(16)
100

101

102

Cores(Nodes)

IntegralLines

wavelet

elevation

isabel

random

backpack

Figure 3.12 – Weak scaling (execution times) for various algorithms (MPI+thread: 1

MPI process and 24 threads per node). The dotted lines indicate ideal performances.

fined in Section 3.4.2 (for a fine-grain account of the execution time within

an algorithm and its preconditioning).

3.6.2.1 The Adenine Thymine complex (AT) dataset

For the experiments of Figs. 3.7 and 3.13 (left), the selected resampling

dimensions for the input regular grid are 20483, a choice explained in Sec-

tion 3.5.4. The overall computation takes 241.2 seconds. Preconditioning

is triggered once, before executing the first TTK algorithm. The longest

preconditioning step is Paraview’s ghost cells generation (24.2% of the to-

tal pipeline time), a step commonly used in a distributed-memory setting,

regardless of TTK. The preconditioning specific to TTK’s use of MPI (i.e.

Local Adjacency Graph, Simplex-To-Process Maps, Ghost Data Exchange) is sig-

nificantly faster and takes only 1.2% of the overall pipeline computation

time, which can be considered as negligible next to the rest of the pipeline.

TTK computations (preconditioning included) make up 70.1% of the total

pipeline computation, which can be considered as a satisfactory efficiency.

88 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

GCG SFS1 SFS2 SFN1 AP SFCP1 IL GS Other
0

50

100

Filters

E
x
e
c
u
ti
o
n
ti
m
e
(s
)

At

GCG SFS1 SFS2 SFN1 AP SFCP1 IL GS Other
0

500

1,000

1,500

Filters

Turbulent �ow

GhostCellsGenerator

Ghost Data Exchange

Simplex-To-Process Maps

Local Adjacency Graph

Algorithm

Figure 3.13 – Time profiling for the integrated pipeline for the AT dataset resampled

to roughly 8.5 billion vertices (left) and the Turbulent Channel Flow dataset (right)

of 120 billion vertices. The execution was conducted using 64 nodes of 24 cores each

(1536 cores in total) on MeSU-beta. Each bar corresponds to the execution time of one

algorithm. SFS1 is computed for 1 iteration for the AT dataset and 10 iterations for the

turbulent flow dataset (which is more irregular). The Other step consists in steps that

are not part of an algorithm, such as loading the TTK plugin in Paraview, Paraview

overhead and I/O operations. Only algorithms that take up a significant amount of time

are shown in the profiling (see Table 3.1 for a description of the abbreviations). In both

cases, the MPI preconditioning computed by our framework (Local Adjacency Graph,

Simplex-To-Process Maps, Ghost Data Exchange) is negligible within the overall

pipeline execution time (at most 1.2%).

Figure 3.14 – Output of the integrated pipeline on the Turbulent Channel Flow dataset

(120 billion vertices), a three-dimensional regular grid with two scalar fields, the pressure

of the fluid and its gradient magnitude. The pipeline was executed up to the Geometry

Smoother algorithm. The spheres correspond to the pressure critical points and the tubes

are the integral lines starting at saddle points. Figure (a) shows all of the produced geom-

etry, while (b) and (c) show parts of the output zoomed in. These images were produced

on a quarter of the total dataset due to rendering related issues (see subsubsection 3.6.2.2),

while Figure 3.13 was produced on the full dataset.

3.6. Results 89

3.6.2.2 The Turbulent Channel Flow dataset

The computation shown in Figure 3.13 (right) was performed on the com-

plete dataset (120 billion vertices, single-precision, Section 3.5.4). The over-

all computation takes 5257.5 seconds.

The execution time of this pipeline includes the algorithms listed in

Table 3.1. Note that the rendering time is not included in the time profiling

reported in Figure 3.13 (for both datasets). For the turbulent flow dataset,

explicit glyphs were used for the rendering of the critical points (spheres)

and integral lines (cylinders), as the screen-space glyph rendering features

of ParaView did not produce satisfactory results in a distributed setting.

However, the generation of glyph geometry required a lot of memory,

therefore the rendering in Figure 3.14 was performed on only a quarter

of the dataset. The pipeline profiled in Figure 3.13, however, was indeed

executed on the whole dataset.

Similarly to the AT dataset, the longest preconditioning step is Par-

aview’s ghost cells generation (30.7% of the total pipeline time). Again,

TTK’s specific MPI-preconditioning is marginal and takes up only 0.7% of

the overall pipeline computation time. Computations of TTK algorithms

(preconditioning included) make up for 59.2% of the total execution time.

When compared to the AT dataset, the execution time of SFCP1 is mul-

tiplied by a factor of roughly 15, which is comparable to the increase in

data size between datasets, indicating good scalability.

Overall, this experiment shows that, thanks to our MPI-based frame-

work, TTK can now run advanced analysis pipelines on massive datasets

(up to 120 billion vertices on our supercomputer), which were too large

to be handled by TTK prior to this work. We showed that this could be

achieved in an acceptable amount of time, while requiring a TTK-MPI spe-

cific preconditioning of negligible computation time overhead (0.7% of the

total computation).

3.6.3 Limitations

Section 3.3 presented our strategy to provide consistent global simplex

identifiers, irrespective of the number of processes. This guarantees a per-

bit compatibility of the input data representation with the sequential mode

of TTK, and consequently a per-bit compatibility of the pipeline outputs.

However, the usage of threads can challenge the determinism of certain

algorithms, given the non-deterministic nature of the thread scheduler.

Then, an additional effort may need to be made by the developers to ad-

90 Chapter 3. A Software Framework for Distributed Topological Analysis Pipelines

dress this non-determinism within their implementation of a topological

algorithm (to ensure per-bit compatibility). In our experiments, we opted

not to enforce determinism for integral lines, given the lack of control over

the thread scheduler.

A significant difficulty occurring when processing massive datasets

with ParaView is the substantial memory footprint induced by ParaView’s

interactive pipeline management. Data flows through the pipeline, be-

ing transformed at each step by algorithms. Rather than modifying data

in-place, algorithms generate copies before implementing changes. This

methodology offers several advantages, such as preventing redundant

computation of inputs when multiple branches share the same input,

resulting in better efficiency, especially when adjusting interactively the

algorithm parameters. However, this copy-before-computation approach

leads to a rapid increase in memory usage during computations, which

can become problematic in practice for pipelines counting a large number

of algorithms.

Finally, several specialized domain representations which are popular

in scientific computing – such as grids with periodic conditions along a

restricted set of dimensions or adaptive mesh refinement (AMR) – are

not natively supported by TTK and these currently need to be explicitly

triangulated in a pre-process.

3.7 Summary

In this chapter, we presented a software framework for the support of

topological analysis pipelines in a distributed-memory model. Specifi-

cally, we instantiated our framework with the MPI model, within TTK. An

extension of TTK’s efficient triangulation data structure to a distributed-

memory context was presented, as well as a software infrastructure sup-

porting advanced and distributed topological pipelines. A taxonomy of

algorithms supported by TTK was provided, depending on their commu-

nication requirements. The ports of several algorithms were described,

with detailed performance analyses, following a MPI+thread strategy. We

also provided a real-life use case consisting of an advanced pipeline of

multiple algorithms, run on a dataset of 120 billion vertices on a compute

cluster with 64 nodes (1536 cores), showing that the cost of TTK’s MPI pre-

conditioning is marginal next to the execution time of the pipeline. TTK is

now able to compute complex pipelines involving several algorithms on

datasets too large to be processed on a commodity computer.

3.7. Summary 91

As a perspective, the entire stack of TDA algorithms can now be revis-

ited to be adapted to the distributed setting, which we initiate in the next

chapter with persistent homology computation.

4Distributed Discrete Morse

Sandwich: Efficient

Computation of Persistence

Diagrams for Massive Scalar

Data

Contents

4.1 Outline . 97

4.1.1 Related work . 97

4.1.2 Contributions . 99

4.2 The original Discrete Morse Sandwich algorithm . . . 100

4.3 Overview . 105

4.4 Extremum-Saddle Persistence Pairs 105

4.4.1 Stable and unstable sets computation 106

4.4.2 Distributed extremum graph construction 106

4.4.3 Self-correcting distributed pairing 107

4.4.4 Shared-memory parallelism 111

4.5 Saddle-Saddle Persistence Pairs 111

4.5.1 Distributed-memory parallel algorithm 113

4.5.2 Anticipation of propagation computation 114

4.5.3 Overlap of communication and computation 118

4.6 Results . 119

4.6.1 Datasets . 120

4.6.2 Performance improvements 121

93

94

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

4.6.3 Strong scaling . 122

4.6.4 Weak scaling . 123

4.6.5 Performance comparison 124

4.6.6 Example . 126

4.6.7 Limitations . 127

4.7 Summary . 128

This chapter presents the extension of the “Discrete Morse Sandwich”

(DMS) to distributed-memory parallelism with MPI. The persistence

diagram which describes the topological features of a dataset, is a key

descriptor in Topological Data Analysis. The DMS method is reported to

be the most efficient algorithm for computing persistence diagrams of 3D

scalar fields on a single node, using shared-memory parallelism. In this

work, we extend DMS to distributed-memory parallelism for the efficient

and scalable computation of persistence diagrams for massive datasets

across multiple compute nodes. On the one hand, we can leverage the

embarrassingly parallel procedure of the first and most time-consuming

step of DMS (namely the discrete gradient computation). On the other

hand, the efficient distributed computations of the subsequent DMS steps

are much more challenging. Like most TDA algorithms, they indeed pro-

vide a global view point on the data, which requires multiple global and

irregular data traversals with little computation, a combination of factors

that challenges scalability due to the additional communications, synchro-

nizations and computations required to ensure the correctness of the algo-

rithm. To address this, we have extensively revised the DMS routines by

contributing a new self-correcting distributed pairing algorithm, redesign-

ing key data structures and introducing computation tokens to coordi-

nate distributed computations. We have also introduced a dedicated com-

munication thread to overlap communication and computation. Besides,

DDMS relies on a hybrid MPI+thread design combining the advantages

of both shared and distributed memories: (i) larger total memory and

(ii) reduced communication and synchronization overheads, along with

improved intra-node dynamic load balancing. Detailed performance anal-

yses show the scalability of our hybrid MPI+thread implementation for

strong and weak scaling using up to 16 nodes of 32 cores each (512 cores

total). Our implementation outperforms DIPHA, a reference implemen-

tation for the distributed computation of persistence diagrams, with an

average speedup of ×8 on 512 cores. Finally, we show the capabilities of

95

our algorithm by computing the persistence diagram of a 3D scalar field

of 6 billion vertices in 174 seconds on 512 cores.

The work presented in this chapter is under major revision after sub-

mission to the journal IEEE Transactions on Parallel and Distributed

Systems. An example of use is available online (https://github.com/

eve-le-guillou/DDMS-example). Our implementation is integrated in

TTK.

https://github.com/eve-le-guillou/DDMS-example
https://github.com/eve-le-guillou/DDMS-example

4.1. Outline 97

4.1 Outline

This chapter introduces the Distributed Discrete Morse Sandwich

(DDMS), an efficient algorithm for persistence diagram (see subsub-

section 2.1.3.2) computation exploiting distributed-memory parallelism.

The original DMS algorithm is summarized in Section 4.2. Section 4.3

offers a high-level overview of DDMS. In Section 4.4, we provide a de-

tailed explanation of the distributed computation of D0 and D2, including

our novel self-correcting procedure at the core of this computation. In

Section 4.5, we present the distributed computation of D1 which has

been designed by revisiting the DMS procedure "PairCriticalSimplices".

Our experiments are presented in Section 4.6, both in strong and weak

scaling. We also demonstrate significant gain over DIPHA [BKR14b] (Sec-

tion 4.6.5), to our knowledge the only publicly available implementation

for this problem in a distributed context. Finally, we illustrate the new

distributed capabilities of DDMS by computing the persistence diagram

(Section 4.6.6) of a 3D scalar field of 6 billion vertices distributed on 16

nodes of 32 cores each.

4.1.1 Related work

Persistent homology: Multiple research groups independently introduced

persistent homology [Bar94, ELZ02, FL99, Rob99]. In numerous data anal-

ysis applications, topological persistence rapidly emerged as a compelling

measure of importance, helping in the identification of salient topological

features within the data. The most common method for persistence ho-

mology computation relies on the reduction of the boundary matrix (that

describes the facet/co-facet relations between the simplices of the input

domain). DMS relies on a different strategy, based on discrete Morse The-

ory [For98, MN12, RWS11], but there are several conceptual similarities

to existing documented accelerations. Bauer et al. [Bau19] introduced

the idea of apparent pairs, which is similar to the zero-persistence skip pre-

computation step of DMS. Furthermore, the stratification strategy used in

DMS can be linked with the stratification used by Bauer et al. [BKR14a]

through "Clearing" and "Compression". These operations enables one to dis-

card simplices already involved in persistence pairs. Edelsbrunner et al.

[ELZ02] observe that the persistence diagram for dimension 0 can be com-

puted through a Union-Find data structure. They also observe that the

2-dimensional persistence diagram can be obtained, by symmetry, with

98

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

a Union-Find structure. This was aggressively exploited by Guillou et

al. [GVT23] as they restricted the Union-Find computation to stable and

unstable sets of 1 and 2 saddles.

Other methods have investigated Morse Theory to accelerate the com-

putation of persistent homology [Mil63, Mor34], specifically in a dis-

crete setting [For98]. In particular, Robins et al [RWS11] introduced

the discrete gradient employed in DMS and used it to accelerate the

computation of persistence. Other approaches improved on this idea

[GRWH12, Iur21, Wag23] or extended it to a more general setting not

limited to regular grids [MN12]. For instance, Wagner introduced an out-

of-core approach [Wag23] capable of processing massive scalar datasets

on commodity hardware, but at the expense of significantly long compu-

tations (typically hours of computation for several billions of data points).

In contrast, our approach targets high-performance hardware in a dis-

tributed setting, with much faster computations (Section 4.6.6). Also, note

that this out-of-core approach [Wag23] is not included in the performance

benchmark by Guillou et al. [GVT23] (which was published before) but

our preliminary experiments report a typical ×2 speedup in favor of DMS

[GVT23] on our hardware. Overall, in contrast to previous approaches

based on discrete Morse theory, DMS significantly accelerates the pro-

cess thanks to an aggressive stratification strategy, taking advantage of the

specificities of the diagrams D0 and D2 and avoiding the computation of

the full Morse complex.

In practice, there are numerous software packages available to pro-

duce persistence diagrams, such as PHAT [BKRW17], DIPHA [BKR14b],

Gudhi [MBGY14], Ripser [Bau19] or Eirene [HP18]. Each implementa-

tion however focuses on particular data structures, such as generic fil-

trations of cell complexes (for PHAT, DIPHA and Gudhi) or Rips filtration

of high-dimensional point clouds (for Eirene and Ripser). Some of the

listed software for persistence diagram computation are purely sequen-

tial (Eirene, Ripser), while others implement shared-memory parallelism

(PHAT, DMS). DMS has been reported to be the fastest implementation

using shared-memory parallelism, according to the benchmark provided

with its introductory paper [GVT23].

Distributed-memory algorithms: There are few existing approaches rel-

ative to distributed-memory parallelism and persistence diagrams. The

most well-known method is DIPHA, introduced by Bauer et al. in

[BKR14b]. It computes the boundary matrix of the domain and parti-

tions the matrix into blocks of contiguous columns. The boundary matrix

4.1. Outline 99

represents the relations between the simplices and their faces. The matrix

is then reduced using a variant of Gaussian elimination. In particular, it

is very similar to the spectral sequence algorithm for persistent homol-

ogy [EH09], with several adaptations to make it correct and efficient in a

distributed-memory setting. Each block is first reduced locally on a pro-

cess. When the blocks have been reduced to the best of a process’s capabil-

ities, the unreduced columns are sent to the next process to the left. These

communication and computation steps are performed until all columns

are completely reduced. The persistence pairs of the diagram can then

be extracted from the columns and rows of the reduced matrix. DIPHA

offers good parallel speedups, using only multi-process (MPI) parallelism

(no multi-threading), and allows for the analysis of larger datasets than

anterior work.

Another distributed method was introduced by Ceccaroni et al. in

[CDRFPB24]. However, their parallelism is limited to the concurrent pro-

cessing of multiple, smaller datasets (i.e., at least one full dataset per pro-

cess). On the contrary, we aim in this chapter at processing one volu-

minous dataset on multiple compute nodes. An approach recently intro-

duced by Nigmetov et al. [NM24] also uses distributed-memory paral-

lelization to produce a persistence diagram. The algorithm combines spa-

tial and range partitioning by computing first a local reduction of the data

and then switching to a global reduction. However, this algorithm relies

on persistent co-homology while our algorithm uses homology. As stated

by Nigmetov et al., experiments suggest that persistent homology may be

more efficient for computing the persistence diagram. Experiments that

we performed with DIPHA using both homology and co-homology con-

firm this. At the time of writing this manuscript, no public implementa-

tion has been found for the approach of Nigmetov et al. To our knowledge,

DIPHA is thus the only public implementation for distributed-memory

computation of persistent homology.

4.1.2 Contributions

This chapter makes the following new contributions:

1. A hybrid distributed, shared-memory algorithm for the computation of

persistence diagrams for 1D, 2D and 3D data: Our work extends the

fastest shared-memory approach (DMS) to the distributed setting,

enabling an efficient computation of persistence diagrams for scalar

100

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

fields of significant sizes. This is achieved thanks to the following

novel procedures:

(a) A novel self-correcting distributed algorithm for computing D0

and D2, extending the related procedure of DMS [GVT23] to

the distributed setting.

(b) A novel procedure for computing D1, based on an efficient ex-

tension of the "PairCriticalSimplices" procedure [GVT23] with

specific data structures, computation tokens, and a dedicated

communication thread to overlap communication and compu-

tation.

The algorithm is output sensitive and provides substantial gains over

the original DMS approach as well as DIPHA, the reference method

for computing persistence diagrams in a distributed setting.

2. An open-source implementation: For reproduction purposes, we pro-

vide a C++ implementation of our approach using MPI+OpenMP

and based on the Topology ToolKit (TTK) [BMBF+
19, TFL+

17,

LWG+
24] integrated in ParaView.

3. A reproducible example: We provide a reference Python script for

computing the persistence diagram with a dataset size that can be

adjusted to fit the capacities of any system (publicly available at:

https://github.com/eve-le-guillou/DDMS-example).

4.2 The original Discrete Morse Sandwich algorithm

Here is an overview of the original Discrete Morse Sandwich algorithm.

For a more detailed description of the algorithm, we refer the reader to

its introduction paper [GVT23]. We consider here 3D datasets, where D0,

D1 and D2 have to be computed. First, the discrete gradient is computed

in parallel using multi-threading. The critical simplices are then deduced

from the gradient. This step is called the zero-persistence skip: each re-

maining, non-critical simplex forms a zero-persistence pair with the other

simplex involved in its discrete vector (subsubsection 2.1.2.3). The rest of

the algorithm will focus on pairing the obtained critical simplices, follow-

ing a stratification strategy where D0 and D2 (special cases) are computed

before D1.

The diagram D0 is computed first. An overview of this algorithm is

shown in Figure 4.1. We start by building an extremum graph noted G0 by

https://github.com/eve-le-guillou/DDMS-example

4.2. The original Discrete Morse Sandwich algorithm 101

Figure 4.1 – Overview of the DMS algorithm for the computation of D0. First, the

unstable set is computed from the vertices of the critical 1-simplex σ by tracing v-paths

(white curves, left). The set is then collapsed into an extremum graph G0 (middle).

Each critical simplex is represented by a node in the graph, with the arcs representing

the v-paths. Finally, the graph is processed with a Union-Find structure to produce the

persistence pair in D0 (right).

following, for the two vertices v0 and v1 of a critical edge σ, the gradient

until a critical 0-simplex (or extremum) is reached (t0 and t1). Each critical

edge is processed in parallel (multi-threading). If t0 and t1 are distinct,

the triplet (σ, t0, t1) represents new elements of the graph G0, adding the

three nodes σ, t0 and t1 (one per element of the triplet) and two arcs rep-

resenting the v-paths between σ and the two extrema. When all critical

1-simplices are processed, G0 is complete. D0 is then computed by visit-

ing the edges of G0 in increasing order following the PairExtremaSaddles

algorithm presented in Algorithm 1. This step is intrinsically sequential,

and relies on a Union-Find data structure for each node of G0. A Union-

Find efficiently models connectivity in data through two primitives: find(),

that returns the representative of the connected component containing the

node, and union(), that merges together two components by unifying their

representatives. Initially, each 0-simplex is its own representative. For

each triplet (σ, t0, t1) of G0, the following procedure is applied: the repre-

sentatives r0 and r1 of t0 and t1 are retrieved (using find()). r0 is ensured to

be the highest representative (l. 5-6 in Algorithm 1), by swapping if nec-

essary its value with r1. The highest representative, r0, is then paired with

σ and is assigned r1 as representative. In Figure 4.1, this step creates the

pairing (σ, t0), with t1 the new representative of t0. To speed up the com-

putation, the triplets of G0 are collapsed as they are visited. This means

that the representative of t0 is also set to r1 (l. 12), which is equivalent

to a path compression in a Union-Find data structure. This concludes the

computation of D0.

The diagram D2 is computed similarly on critical 2- and 3-simplices

using a dual discrete gradient field, obtained by reversing every discrete

102

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

vector of the discrete gradient on the domain’s dual complex (see [GVT23]

for more details).

Algorithm 1 PairExtremaSaddles

Input: An ordered set C1 of triplets (σj, t0, t1) of G0

Output: Persistence diagram D0

1: for j ∈ C1 do // Process the 1-simplex σj

2: r0 ← f indRepresentative(t0)

3: r1 ← f indRepresentative(t1)

4: if r0 6= r1 then

5: if r0 < r1 then

6: swap(r0, r1)

7: end if

8: addPair(σj, r0)

9: Representative[r0]← r1

10: Representative[t0]← r1 // The arc is collapsed

11: end if

12: end for

For 3D datasets, D1 is computed last. The first step of the construc-

tion of D1 consists in restricting its input to the unpaired critical 1- and

2-simplices: the critical 1- and 2-simplices already paired in D0 or D2 are

hence not considered here. This stratification strategy greatly reduces the

number of input simplices for D1. We then apply Algorithm 2 using the

PairCriticalSimplex procedure defined in Algorithm 3. For each unpaired

critical 2-simplex σ, a homologous propagation (See Figure 4.2) is performed.

It expands a boundary, initially equal to ∂σ, by selecting the highest 1-

simplex τ of the current boundary and adding to it the boundary of the

2-chain associated to τ. For simplicity, we will refer in the remainder of

this chapter to the boundary initiated this way in σ as the boundary of σ.

The propagation stops at the first unpaired 1-simplex. The pair (τ, σ) can

then be created. σ is the death and τ the birth of the pair. Note that the

propagation is expended in reverse relative to the filtration order: given

a triangle σ, this process identifies the edge τ which created the latest 1-

cycle γ in the filtration which is homologous to ∂σ (subsubsection 2.1.3.2).

All this assumes that the input set of simplices is ordered. However, as

introduced by Morozov et al. in [MN20], it is possible to process the sim-

plices in a random manner, hence in parallel (multi-threading). An extra

case has then to be considered: when performing the homologous propa-

gation for a simplex σ, it is possible to reach a 1-simplex τ that has already

4.2. The original Discrete Morse Sandwich algorithm 103

Figure 4.2 – A homologous propagation given a simplex σ. The boundary of σ, ∂σ, is

iteratively expanded by selecting its highest 1-simplex τ and adding to the boundary of σ

the boundary of the 2-chain associated to τ. The boundary is expanded until reaching a

critical 1-simplex (here in dark blue). The pair (σ, τ) is then added to D1.

been paired to a 2-simplex στ through homologous propagation. In that

case, there are two possibilities: either (i) στ is lower than σ and the prop-

agation carries on by merging ∂στ with ∂σ, or (ii) στ is higher than σ. In

that case, the pair (τ, στ) is removed, (τ, σ) is added and the homologous

propagation of στ is resumed. Compare-And-Swap operations are used

for thread-safe memory accesses as described by Morozov et al.[MN20].

D1 is finally created from the temporary pairs once all 2-simplices have

been completely processed.

Algorithm 2 PairCriticalSimplices

Input: Set C2 of unpaired critical 2-simplices

Output: Persistence diagram D1

1: for j ∈ C2 in parallel (multi-threading) do

2: PairCriticalSimplex(σj)

3: end for

4: for j ∈ C2 do

5: D1 ← D1 ∪ (Pair(σj), σj)

6: end for

Regarding 2D datasets, only the diagrams D0 and D1 have to be com-

puted. D1 is then computed in 2D on critical 1- and 2-simplices like D2 in

3D.

104

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

Algorithm 3 PairCriticalSimplex (homologous propagation)

Input: An unpaired critical 2-simplex σ

Output: A temporary pair of D1

1: if Boundary(σ) == 0 then

2: Boundary(σ)← ∂σ

3: end if

4: while Boundary(σ) 6= 0 do

5: τ ← max(Boundary(σ))

6: if τ is not a critical simplex then // Expand boundary

7: Boundary(σ)←
8: Boundary(σ) + Boundary(Pair(τ))

9: else // τ is critical

10: if Pair(τ) == ∅ then // τ is unpaired

11: addPair(σ, τ)

12: break

13: else // τ has already been paired to στ

14: στ ← Pair(τ)

15: if στ < σ then // Merge the boundaries

16: Boundary(σ)←
17: Boundary(σ) + Boundary(στ)

18: else // σ is older and the true death of τ

19: addPair(σ, τ)

20: Pair(στ)← ∅

21: PairCriticalSimplex(στ) // Resume for στ

22: end if

23: end if

24: end if

25: end while

4.3. Overview 105

4.3 Overview

This section provides an overview of our approach. First, the global or-

der of vertices is computed. This step is called Array Preconditioning. In

a distributed-memory setting, a global order is necessary for comparing

vertices owned by different processes. The computation is done in parallel

on multiple processes in three steps: we start by creating locally a vector

for all vertices of the elements to sort (comprised of the scalar value of

the vertex, its global identifier and the rank of the process that owns it).

A distributed sort is then performed on the vector using psort [CSGE07].

This particular implementation was chosen because it is lightweight, mod-

ifiable and relatively efficient. DIPHA also uses this implementation to

construct its boundary matrix. Each process can then compute the global

order of the elements that are present locally following the distributed

sort. Finally, the global orders are sent back to the owner of the corre-

sponding vertices. For simplices of higher dimension, comparisons are

performed using the lexicographic comparison on their global vertex or-

ders (subsubsection 2.1.1.5).

Second, the discrete gradient of the input data is computed by using

the algorithm described by Robins et al. [RWS11], which is embarrassingly

parallel for both shared- and distributed-memory contexts [LWG+
24].

Third, the critical simplices are extracted from the gradient and sorted

in the step Extract & sort.

Fourth, the diagrams D0 and D2 are computed by processing the un-

stable and stable sets of the 1-saddles and 2-saddles of f and applying a

self-correcting pairing algorithm to extract the pairs of the diagram (Sec-

tion 4.4).

Next, the diagram D1 is computed from the unpaired 1- and 2-saddles

using our novel algorithm "DistributedPairCriticalSimplices" (Section 4.5).

Finally, the classes of infinite persistence are extracted by collecting the

remaining, unpaired critical simplices.

4.4 Extremum-Saddle Persistence Pairs

In this section, we will describe the different modifications to PairEx-

tremaSaddles (see Algorithm 1) that we contributed to obtain a

distributed-memory version. This algorithm is applied to compute both

D0 and D2. An overview of the algorithm is provided in Figure 4.3.

106

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

Figure 4.3 – Overview of our algorithm for extremum-saddle pairing for D0. First,

the unstable set is computed from the vertices of the critical 1-simplices s0 and s1 (sub-

figure a, the two thick edges with their vertices) by following the gradient. When the

computations of sets reach ghost simplices, a message is sent to the relevant process to

notify it to resume computation on its domain (sub-figure b, the newly computed part of

the set is thicker). Rounds of computations and communications are performed until all

sets are computed (sub-figure c). The set is then collapsed into the distributed graph G0

following the rules stated in Section 4.4.2 (sub-figure d). The ownership of extremum t0 is

given to process 0 as it is the process with the lowest rank identifier that has a set that ends

in t0. The ownership of extremum t1 is given to process 2 as it has an unstable set started

inM2, at s1, that ends in t1. The graph is then processed with a distributed Union-Find

structure to produce the persistence pair in D0. The thicker arc (s0, t1) corresponds to the

computed persistence pair.

4.4.1 Stable and unstable sets computation

The unstable sets of all critical 1-simplices are computed as follows: a v-

path is extracted from each vertex of each critical 1-simplex. Then, two

possibilities arise: a critical vertex is encountered (i.e. a local minimum),

ending the computation there for this unstable set, or a ghost vertex is en-

countered, in which case a message is stored to be later sent to the process

owning the ghost vertex so that the computation can resume there later.

Once all computations either are completed or have generated a message,

all processes exchange their stored messages and resume their computa-

tions on their block. These successive computation and communication

steps run until no messages are sent on any process during a communi-

cation round. For stable sets, the computation is similar but is applied on

2-simplices as the start of the set and 3-simplices as the final simplex of

the set. The gradient is followed in reverse to emulate the dual gradient

without explicitly computing it.

4.4.2 Distributed extremum graph construction

The previous step computes the stable and unstable sets. Now we need to

collapse those sets into the distributed extremum graphs Gi with i ∈ {0, 2}.
In the remainder, we focus on the case i = 0, the case i = 2 being symmet-

4.4. Extremum-Saddle Persistence Pairs 107

ric. The nodes of the graph are the saddles and extrema of the previously

computed sets (Section 4.4.1). The arcs of the graph represent the v-paths

connecting these critical simplices. A triplet of the graph refers to the three

nodes (σ, t0, t1), where σ is a critical saddle and t0 and t1 extrema linked to

σ by v-paths. Nodes of this graph may be located on different processes.

We therefore establish a few additional rules to fit the definitions of G0 to

a distributed-memory setting. Saddles are present on only one process. A

saddle node in G0 is owned by a process p if its associated critical simplex

is exclusively owned by p (Section 3.2). Extrema, however, can be present

on multiple processes but they are owned by only one and are ghost on

other processes. The ownership of an extremum node is determined as

follows. If an extremum simplex e is exclusively owned by the process p

(Section 3.2) and if there exists a saddle simplex s also exclusively owned

by p such that one of its unstable sets terminates in e, then the extremum

node of G0 associated to e is owned by p. Otherwise, the node associated

to e is owned by the process with the lowest rank identifier that owns a

saddle node whose unstable set ends in e. Figure 4.4 shows an example

of a distributed extremum graph and applied ownership rules. The local

graph on a process p is noted G0,p. The ghosted local graph of a process p

is noted G ′0,p. An extremum node is called at the interface of two processes

p and q if it is owned by either p or q and is a ghost on the other process.

The computation of the collapse of the sets to build a graph is fairly

straightforward: once all the sets are computed, the processes possess

lists of all sets ending on a local extremum they own with regard to their

domain. Each process will then determine which process is the owner of

the extremum in the graph and send back to the owner of the originating

saddle the extremum and its new ownership. It will also send to the new

owner of the node a list of all the processes on which the extremum is a

ghost with regard to the graph. Each process will then receive and build

the parts of its local graph.

4.4.3 Self-correcting distributed pairing

We now have to build the D0 pairs from the local graph G ′0,p (and sim-

ilarly for D2). This step was originally performed sequentially in DMS

since its execution time was negligible compared to others. However, in

a distributed-memory setting, a sequential execution is not viable as it

would prevent any speedup on multiple nodes.

We thus have to design a distributed pairing algorithm. We use the

108

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

Figure 4.4 – Illustration of our self-correcting pairing algorithm on an example of G0.

Sub-figure a represents a distributed extremum graph on 3 processes, 0 (in blue), 1 (in

orange) and 2 (in yellow). Extrema at the interface of two processes intersect with the

dashed grey lines separating the domain of the processes. Sub-figure b represents the first

computation iteration. Each process computes on its local graph without taking other

processes into consideration. On process 2, s2 is paired with t4 (shown here by a thicker

arc) and t0 is made the new representative of t4 (shown here by a dashed arrow). Then the

pairing of s3 is performed: s3 can be paired with either t3 or the representative of t4, t0.

Since t3 is higher than t0, s3 is paired with t3. On process 1, s1 is also paired with t3. After

the computation, processes exchange data regarding relevant, shared pairings. Process 2

will tell process 1 it created the pairing (s3, t3) with t0 as the new representative, because

t3 is owned by process 1. Process 1 will tell process 2 about its owned pairing ((s1, t3),

with t2 as the new representative) because it knows that t3 is present as a ghost on the

graph of process 2. Process 2, upon receiving this message, will assess that the message is

correct and its pairing (s3, t3) is wrong. It will compute a new pairing: (s3, t2) (as t2 is

the new representative of t3) and tell process 1 about the pairing (sub-figure c). Process 1

will update t2 in the pairing to its representative, t1. As t1 is owned by process 0, process

1 will tell it about the pairing. Process 0, knowing that t1 is unpaired, will accept the

pairing (s3, t1), update the representative of t1 to t0 and send back the information to

process 2 that the actual correct pairing is (s3, t1) as shown in sub-figure d.

4.4. Extremum-Saddle Persistence Pairs 109

idea of comparing saddles to see which is the oldest (or the youngest),

but restrict the algorithm to the distributed extremum graph created at

the previous step. Our algorithm design is also inspired by the self-

correcting mechanism of the parallel (multi-threaded) procedure PairCrit-

icalSimplices, computing D1 in the original DMS algorithm. This intro-

duces incorrect pairings resulting in extra computations. Such overhead is

however handled in parallel, ultimately resulting in overall performance

gains (see Section 4.6). Comparisons to the original DMS algorithm in Fig-

ure 4.10 also show that our method incurs limited overhead. Moreover, we

expected other strategies relying on a more direct approach (i.e. without

incorrect pairings) to induce too much synchronizations and idle time to

perform well.

A key difference from the original DMS algorithm is that the repre-

sentative of an extremum will now store two pieces of information: the

representative and the identifier of the saddle that assigned the represen-

tative to the extremum. This enables, when computing the pairing of a

saddle σ, to stop the computation of the representatives of its extrema

nodes t0 and t1 when the loop reaches representatives assigned by saddles

older than σ (as this would not occur in sequential). The path compres-

sion mechanism of DMS mentioned in Section 4.2 (see Algorithm 1) is no

longer applied as the resulting representatives may be false, leading to

potentially incorrect computations for other pairings during the computa-

tion of other representatives. When a wrong pairing is detected by saddle

comparison, the computation of the representatives of its original triplet

is re-started from the beginning using Algorithm 4.

Here is a description of the overall self-correcting distributed algo-

rithm. A practical example is shown in Figure 4.4. First, each process

executes DistributedProcessTriplet (See Algorithm 4) for all its triplets (in

a sorted manner, as it proved to be more efficient even though it is not

required). The messages to be sent are stored until all computations are

performed, then all processes exchange their messages. For each mes-

sage (σ, m0, m1) received, the process will first detect if it is a recompu-

tation (encoded by (σ,−1,−1)) and will trigger it. If it is not a recom-

putation, the process will update the representatives of the message to

(σ, Representative(m0, σ), Representative(m1, σ)). If the newly computed

representatives belong to another process, then the message is passed

along to that other process. Otherwise, the process detects if the message

should trigger a correction through saddle comparison. If so, the pairs

and the representatives are updated and a recomputation is triggered for

110

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

Algorithm 4 DistributedProcessTriplet

Input: A triplet (σ, t0, t1) of G0,p on process p

Output: A temporary pair of D0

1: for i in {0, 1} do // Compute the representatives

2: ri ← f indRepresentative(ti, σ)

3: riPaired← Pair(ri) 6= ∅

4: ri Invalid← riPaired and σ < Pair(ri)

5: if ri Invalid then

6: riPaired← f alse

7: end if

8: end for

9: if r0 /∈ G ′0,p or r1 /∈ G ′0,p then

10: Send (σ, r0, r1) to owner

11: end if

12: if r0 == r1 then

13: if Pair(σ) 6= ∅ then // σ should not be paired

14: r ← Pair(σ)

15: Representative[r]← r // re-initialize the representative

16: Pair(σ), Pair(r)← ∅, ∅ // remove the invalid pair

17: end if

18: else

19: if (r0 < r1 or r0Paired) and !(r1Paired) then

20: swap r0 and r1 data

21: end if

22: if !(r0Paired) then

23: if r0 Invalid then // remove the invalid pair

24: σk ← Pair(r0)

25: Pair(σk)← ∅

26: end if

27: Pair(σ), Pair(r0)← r0, σ // Add the new pair

28: Representative[r0]← (r1, σ)

29: if r0 is at the interface of p and process q then

30: Send (σ, r0, r1) to process q

31: end if

32: if r0 Invalid then // Recompute the invalid σk

33: if σk ∈ G0,p then

34: DistributedProcessTriplet(σk)

35: else

36: Send recomputation signal to the owner of σk

37: end if

38: end if

39: end if

40: end if

4.5. Saddle-Saddle Persistence Pairs 111

the invalid saddle. This cycle of communications and computations is re-

peated until no messages are sent on any process during a communication

round.

The original DMS algorithm used vectors to store several variables rel-

ative to critical simplices in its PairCriticalSimplices algorithm. These vec-

tors were defined for all simplices of the triangulation, even though they

were used only for critical simplices. This allowed for fast memory ac-

cesses, as the index of the simplex in the triangulation was equal its index

in the vectors. In a distributed-memory setting, this is no longer possible:

the global number of simplices will most likely prevent the memory allo-

cation of such large vectors. We therefore reduced the size of the vectors

to the number of local critical simplices and used maps to convert a global

simplex index to its index in these vectors.

4.4.4 Shared-memory parallelism

The computations of stable and unstable sets are straightforwardly pro-

cessed with multiple threads in each MPI process as all set computations

are independent. The communications are however performed only by

the OpenMP primary thread. The construction of the distributed graph is

similarly parallelized.

The self-correcting pairing algorithm is not multi-threaded. As shown

by Guillou et al. [GVT23] (Table 3, Appendix C), the computation of D0

and D2 with DMS is often negligible in terms of computation time with

regard to the other procedures. This indicates that a parallelization of

this step (even efficient) would result in very modest gains overall, if any.

Notice also that a multi-threaded implementation of a similar algorithm

by Smirnov et al. [SM17] leads indeed to limited speedups.

D0 and D2 being completely independent, we assigned each diagram

computation to an OpenMP task that can itself generate threads in a

nested manner.

4.5 Saddle-Saddle Persistence Pairs

In this section, we will describe the different modifications to the original

PairCriticalSimplex (Algorithm 3) and PairCriticalSimplices (Algorithm 2)

algorithms necessary for the efficient distributed computation of D1.

112

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

Figure 4.5 – Distributed homologous propagation. Sub-figure a shows two critical sim-

plices: σ, the death saddle, and τ, the birth saddle. σ is located on process 1 (light yellow)

and τ is located on process 0 (light blue). Initially, the boundary of σ is only located on

process 1 (Sub-figure b). New edges are added to the boundary that are owned by process

1 (Sub-figure c). Then new edges are added to the boundary that are ghost for process

1 (Sub-figure d) and a message is sent to process 0 so that it adds the edges to its local

boundary of σ. On process 1, a new piece of information is stored regarding the boundary:

the highest edge for process 0 (equal to the highest edge of the two ghost edges). As the

global highest edge is still located on process 1 (gray arrow), the computation continues

on process 1 (Sub-figure d) and additional ghost edges are added (Sub-figure e). After

adding two new ghost edges (Sub-figure f), the highest edge is now located on process

0. Process 1 will send the computation token to process 0. Upon receiving it, process

0 will resume the computation and propagate the boundary (Sub-figure f). Finally, the

propagation ends in τ and the pair (σ,τ) is created on process 0.

4.5. Saddle-Saddle Persistence Pairs 113

4.5.1 Distributed-memory parallel algorithm

Our algorithm relies on a new data structure: the global-local boundary.

For a 2-simplex σ, this structure is composed of two elements: the set of

edges of the boundary initiated in σ (called in the remainder, for simplic-

ity, the boundary of σ), which are owned by the current process p (called

local boundary), and the highest boundary edges of all processes containing

a part of the boundary of σ (called the global boundary). The local bound-

ary is identical to the boundary of the original DMS algorithm. The global

boundary is updated by other processes all through the computation. At

any given time, on a given process p, the highest edge σ of its local bound-

ary is always lower or equal to the highest edges reported by the global

boundaries of the other processes.

A central idea in our distributed-memory algorithm is the notion of

computation token. Each 2-simplex σ for which a homologous propaga-

tion needs to be computed is associated with a token. At any time, the

token of each propagation is present in only one process. Only the pro-

cess owning the token is allowed to propagate the boundary of σ. This

means that, taken individually, each propagation is carried out sequen-

tially. However, all the propagations are computed in parallel similarly to

the shared-memory context.

Here is a description of our algorithm DistributedPairCriticalSimplex as

defined in Algorithm 5 and illustrated in Figure 4.5. This algorithm re-

visits PairCriticalSimplex Algorithm 3 in order to compute a distributed

homologous propagation for an unpaired critical 2-simplex σ. For an un-

paired critical 2-simplex σ ∈ Mp, with p a process, its local boundary

is propagated by following the same rules as PairCriticalSimplex. How-

ever, when a ghost edge, owned by process q, needs to be added to the

global-local boundary of σ, a message will be sent to q so that q adds this

particular edge to its local boundary of σ. The propagation can trigger a

merge between two boundaries. Local boundaries are merged similarly to

PairCriticalSimplex (Algorithm 3, l.15-17). Global boundaries are merged

by keeping the highest of the two edges for each process. A message will

then be sent to notify all the relevant processes that a merge has occurred

and should be performed by them as well. As soon as the highest edge of

the local boundary is no longer the highest edge in the global boundary,

the propagation on p is stopped. Then, the computation token will be sent

to the process owning the highest edge in the global boundary, to resume

the propagation on its block.

114

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

At the end of the computation, the pair (τ, σ) is stored on the process

that owns τ, as the boundary of another propagation may reach τ and a

comparison between the two originating 2-simplices may be required. The

process that owns σ does not have to be aware of which simplex completed

the pair.

DistributedPairCriticalSimplex hence generates two types of messages:

computation tokens and boundary updates. Boundary updates corre-

spond to either a merge order between two global-local boundaries, an

addition of an edge to a local boundary or an update of the highest edge

in a global boundary. The received boundary updates have to be per-

formed in a particular order, to ensure two properties: (i) updates from

potentially multiple processes with regard to one particular propagation

need to be received and processed in the same order they were created in,

(ii) updates from one process with regard to potentially multiple propaga-

tions need also to be received and processed in the same order they were

created in. Other orders may result in an incorrect outcome. For (i), the

property can be ensured by following a round-by-round design with alter-

nating communication and computation steps. Processing the boundary

updates sequentially for each process will ensure property (ii). However,

messages sent by different processes can be processed in any order as long

as they involve different propagations.

The overall algorithm DistributedPairCriticalSimplices (Algorithm 6) re-

visits PairCriticalSimplices (Algorithm 2) with distributed processes, and

following this round-by-round design. All the propagations are first com-

puted locally using multi-thread parallelism. Once all propagations are

either completed or their computation token needs to be sent to another

process, the communications start. First, the boundary updates are ex-

changed and processed. Then the computation tokens are exchanged

and the new propagations are computed in parallel using threads. These

rounds of communications and computations are performed until all crit-

ical 2-simplices are paired.

Similarly to Section 4.4.3, our implementation reduced the size of data

structures and vectors to the local number of critical simplices and used

maps to convert a global simplex index to its index in vectors.

4.5.2 Anticipation of propagation computation

The algorithm presented in the previous section presents a critical flaw:

in the worst case scenario, for boundaries stretched out on multiple pro-

4.5. Saddle-Saddle Persistence Pairs 115

Algorithm 5 DistributedPairCriticalSimplex

Input: An unpaired critical 2-simplex σ

Output: A temporary pair of D1

1: if GlobalLocalBoundary(σ) == 0 then

2: addEdge(GlobalLocalBoundary(σ), ∂σ)

3: end if

4: while GlobalLocalBoundary(σ) 6= 0 do

5: τ ← max(LocalBoundary(σ))

6: τp ← max(GlobalBoundary(σ))

7: if max(τ, τp) == τp then // τp is the highest edge

8: UpdateMaxGlobal(σ, τ, GlobalBoundary(σ))

9: Mark computation token of σ for sending to p

10: return

11: end if // τ is the highest edge

12: if τ is not a critical simplex then

13: addEdge(GlobalLocalBoundary(σ), ∂(Pair(τ))

14: else

15: if Pair(τ) == ∅ then

16: addPair(σ, τ) // τ is unpaired

17: UpdateMaxGlobal(σ, τ, GlobalBoundary(σ))

18: break

19: else

20: στ ← Pair(τ) // τ has already been paired to στ

21: if στ < σ then

22: MergeGlobalLocalBoundaries(σ, στ)

23: else

24: addPair(σ, τ) // σ is older and the true death of τ

25: UpdateMaxGlobal(σ, τ, GlobalBoundary(σ))

26: Pair(στ)← ∅

27: PairCriticalSimplex(στ) // Resume for στ

28: end if

29: end if

30: end if

31: end while

116

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

Algorithm 6 DistributedPairCriticalSimplices

Input: Set C2 of unpaired critical 2-simplices

Input: Set C1 of unpaired critical 1-simplices

Output: Persistence diagrams D1

1: for j ∈ C2 in parallel (multi-threading) do

2: DistributedPairCriticalSimplex(σj)

3: end for

4: while Global number of terminated propagations < |C2| do

5: // Perform global boundary updates

6: Send boundary updates to other processes

7: Receive boundary updates from other processes

8: Update received boundaries

9: // Resume computations with tokens

10: Send computation tokens to other processes

11: Receive computation tokens from other processes

12: for all received tokens σ in parallel (multi-threading) do

13: DistributedPairCriticalSimplex(σ)

14: end for

15: end while

16: for j ∈ C1 do // Extract pairs from boundary computation

17: D1 ← D1 ∪ (σj, Pair(σj))

18: end for

4.5. Saddle-Saddle Persistence Pairs 117

Figure 4.6 – Example of anticipation of propagation computation for 4 processes (process

0 in light blue, process 1 in dark blue, process 2 in orange and process 3 in light yellow).

A critical triangle (in yellow) is the starting point of the distributed homologous propaga-

tion. The boundary is propagated as described in Algorithm 5, however the computation

token is not sent when the global highest edge of the boundary becomes located on process

1 (Sub-figure b). Instead, the propagation is continued on process 3 until the number

of propagation iterations (i.e. while loop iterations in Algorithm 5) reaches a predefined

counter. Then, the computation token is sent to the process owning the global highest

edge (here, process 1). The boundary is propagated on process 1 (Sub-figure c) until an

unpaired critical edge is reached (thick, dark, blue edge). At this point, the global highest

edge is located on process 2 (orange). The blue critical edge is therefore not paired with the

critical triangle and the computation token is sent to process 2 that resumes the propaga-

tion on its domain. When reaching its own critical edge, as the global highest edge is still

located on the domain of process 2, the propagation ends here and the pair is created on

process 2 (Sub-figure d). Instead of having to send the computation token back and forth

between process 1, 2 and 3 to produce the final pairing, the anticipation of propagation

enables to exchange the token only twice.

118

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

cesses, the maximum may change process every time a simplex is added

to the propagation, resulting in repeated exchanges of the computation

token. This may generate an extremely high number of communications.

Anticipating this back and forth is possible by changing slightly the orig-

inal algorithm as shown in Figure 4.6. Instead of stopping the computa-

tion and sending the computation token to another process as soon as the

highest edge of the boundary is located on another process, we further

the computation regardless on the current process, until either the num-

ber of propagation iterations (i.e., while loop iterations in Algorithm 5)

reaches a predefined counter (arbitrarily equal to 0.01% of the number of

triangles of M′
p) or until an unpaired critical simplex c is reached. Only

then is the computation token sent to the process that owns the highest

edge. Not pairing the potential simplex c ensures that the propagation

never expands too far, leading to potentially incorrect pairs, which would

have been difficult to detect and correct afterwards.

4.5.3 Overlap of communication and computation

There are two limitations to the previous algorithm that we want to ad-

dress in this section: thread idle time and cost of communication. Indeed,

at the end of each computation round, when waiting for all work to com-

plete, there is often just a few propagations being computed, resulting in

significant idle time when using many threads. We aim at reducing this

idle time by triggering a communication round before all computations

are finished. On the other hand, the cost of communication can be re-

duced by effectively overlapping communications with computations at

the MPI level.

A dedicated communication thread can solve both these problems. We

preserve the round-by-round structure for the communications to ensure

that the update of global-local boundaries is processed in the right or-

der (see Section 4.5.1), but the communication rounds are now triggered

by the communication threads. In each MPI process, the communication

thread sends and receives messages, updates boundary data and creates

one OpenMP task for each propagation, while the other compute threads

process the propagations.

Even if we aim at starting earlier each communication round, these are

not triggered as soon as one message can be sent. Making the commu-

nication thread wait a little and sending multiple messages in one MPI

communication at once limits indeed the number of communications. It

4.6. Results 119

ensures that the MPI layer is not overloaded with numerous messages, and

limits the number of OpenMP atomic operations performed by the com-

munication thread: these atomic operations are required for a correct syn-

chronization with the compute threads. Messages will only be sent if there

are no tasks left to be computed within the current process or if the num-

ber of messages waiting to be sent by the current process is above a certain

threshold. This threshold is set dynamically to increase reactivity as the

computation progresses. At first, it is equal to 0.01% of the local number

of unpaired 2-simplices. Then, at every round of communications, it is up-

dated using the remaining global number of unpaired critical 2-simplices

to add reactivity to the communications. The communication thread also

performs the update of global-local boundaries. This can be done in paral-

lel of propagation computation as updating global-local boundaries from

the current round will not interfere with the computation of propagations

from previous rounds. This is because the updates are not directly related

to the current computation tokens.

The compute threads can now continuously process the local and in-

coming propagations through a task pool filled by the communication

thread, harnessing more efficiently the intra-node multi-core parallelism.

The idle time of the threads is therefore significantly reduced as compute

threads no longer have to wait at the end of each computation round

and the cost of communication is effectively hidden with the overlap of

communication with computation as usual with a communication thread

[DT16, HSSW11].

4.6 Results

For the following results, we rely on Sorbonne Université’s supercom-

puter, MCMeSU, which has replaced MeSU-beta (Section 3.6) in 2024.

MCMeSU contains 48 nodes of 32 cores each. Each node is composed

of 2 AMD EPYC 7313 Milan CPUs with 256GB of RAM. The nodes are

interconnected with Mellanox Infiniband. In our tests, we use up to 16

nodes (512 cores total), with one MPI process and 32 threads per node to

minimize MPI communications and synchronizations as well as the mem-

ory footprint. When using a communication thread (see Section 4.5.3), we

rely on 31 compute threads only. Our algorithm is implemented in C++

with MPI+OpenMP within TTK [TFL+
17, BMBF+

19]. The correctness of

our implementation was checked for all test datasets, by comparing our

outputs against those generated by DMS (which were already compared

120

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

to DIPHA’s for triangulated voxel data, see [GVT23] for more details).

Tests of strong and weak scaling are conducted to study the performance

of our algorithm. The preconditioning time for TTK’s distributed trian-

gulation (Section 3.2) is not accounted for in this work (it is negligible for

regular grids [LWG+
24]). Specifically, when reporting execution times,

we consider that the data is already distributed among the nodes, in the

form of ghosted blocks (Section 3.2), which is a standard input for analy-

sis pipelines in distributed environments. Only the execution time of our

algorithm and its direct preconditioning are measured. Our algorithm is

also compared to the original DMS algorithm as well as to DIPHA.

4.6.1 Datasets

The performance of our software has been evaluated using multiple

datasets, selected to demonstrate a broad spectrum of cases. These

datasets are sourced from publicly available repositories [Kla20, TTK20]:

Backpack, Isabel, Wavelet, Isotropic pressure, Magnetic reconnection, Syn-

thetic truss, Elevation (pathological case with a persistence diagram of one

class of infinite persistence in D0), Random (pathological case with a high

number of spatially evenly distributed persistence pairs). See Appendix A

for more details on the datasets used in this chapter.

For the strong scaling benchmarks, all datasets were resampled to

5123 via trilinear interpolation, except for Random, that was resampled

to 5122 × 256 as the execution time for this dataset is particularly long

for 5123 with all tested softwares, making it unpractical to manage. This

smaller size still makes Random the dataset with the longest execution

time, as it is our worst case scenario.

For the weak scaling benchmarks, the size of the input (number of

vertices) doubles each times the number of nodes doubles (by doubling

the number of vertices along one, alternating, dimension). The initial size

on one node is the same as the strong scaling one (5122 × 256 for Ran-

dom, 5123 for the others). The datasets were re-sampled in different ways

depending on the size of the original data: Isabel, Backpack, Magnetic Re-

connection have been up-sampled, whereas Synthetic truss and Isotropic

Pressure have been down-sampled. Random was generated for its biggest

weak scaling case and then down-sampled to smaller datasets. Elevation

was generated for each size, so that it always has only one pair in its di-

agram. Due to its symmetry, Wavelet was generated for the largest weak

4.6. Results 121

32(1) 64(2) 128(4) 256(8) 512(16)

101

102

Cores(Nodes)

E
x
e
c
u
ti
o
n
ti
m
e
in

se
c
o
n
d
s
(l
o
g
sc
a
le
)

Strong scaling evolution for backpack

32(1) 64(2) 128(4) 256(8) 512(16)

102

103

Cores(Nodes)

Weak scaling evolution for backpack

Basic

Anticipation

Overlap

Figure 4.7 – Performance impact of the different D1 versions on the overall DDMS

execution time for Backpack. Basic corresponds to the first version for D1 described in

Section 4.5.1, Anticipation to the second one described in Section 4.5.2, and Overlap to

the final one described in Section 4.5.3.

scaling case and then resized by being cut in two along each dimension

alternatively.

4.6.2 Performance improvements

We start by assessing the performance improvements of our different

versions for computing D1, namely: Basic, the initial version (see Sec-

tion 4.5.1); Anticipation, that implements the anticipation of computation

for D1 (see Section 4.5.2) and Overlap that iterates on Anticipation and adds

the overlap of communication and computations thanks to the communi-

cation thread (see Section 4.5.3). As shown in Figure 4.7, the anticipation of

computation dramatically improves the overall DDMS performance, mak-

ing Anticipation 6 times faster than Basic on 16 nodes in strong scaling and

over 12 times in weak scaling. Overlap also improves the performance,

by adding reactivity to the execution. On 16 nodes, it reduces the overall

execution time by 20% in weak scaling and 28% in strong scaling. These

results validate and justify our modifications, which are hence necessary

to efficiently deploy such TDA algorithms on multiple nodes.

From now on, we will only consider the Overlap version, whose de-

tailed execution profile is presented in Figure 4.8. For both strong and

weak scalings, the Array Preconditioning step, which corresponds to the

computation of global order of vertices (see Section 4.3), is quite short and

minority. The discrete gradient step scales very well as expected, which is

an important source of overall performance gains. The computations of D0

and D2 scale also well, in both weak and strong scaling. This also applies

to the Extract & Sort step which corresponds to the extraction and local

sort of critical simplices for all dimensions (see Section 4.3), and which

122

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

32(1) 64(2) 128(4) 256(8) 512(16)
0

10

20

30

40

50

Cores(Nodes)

E
x
e
c
u
ti
o
n
ti
m
e
(s
)

Strong scaling

32(1) 64(2) 128(4) 256(8) 512(16)
0

20

40

60

80

Cores(Nodes)

Weak scaling

D1

D0 and D2

Extract & sort

Discrete Gradient

Array Preconditioning

Figure 4.8 – Execution time of each step of DDMS, for strong (left) and weak (right)

scalings for Backpack.

32(1) 64(2) 128(4) 256(8) 512(16)
0

20

40

60

80

100

Cores(Nodes)

E
�
c
ie
n
c
y

Strong scaling e�ciency

32(1) 64(2) 128(4) 256(8) 512(16)
0

50

100

150

Cores(Nodes)

Weak scaling e�ciency

synthetic

wavelet

elevation

magnetic

isabel

random

backpack

isotropic

Figure 4.9 – Parallel efficiency of DDMS for strong (left) and weak (right) scaling.

is performed independently on each process. Only the computation of

D1 (which is the most intensive in terms of time complexity) scales un-

favorably in both strong and weak scaling. But, thanks to our successive

improvements presented in Section 4.5, there is no strong performance

loss and we still manage to obtain overall significant performance gains

when increasing the number of nodes.

4.6.3 Strong scaling

The results for all datasets in strong scaling are shown in Figure 4.9 (left)

in terms of parallel efficiency with respect to the execution on one core

(see Section 2.2.6). The execution times are also available in Figure 4.10.

With the exception of Random, the efficiencies of all datasets fit within the

range of 55% to 80% on one node and of 20% to 50% on 512 cores. This

shows the scalability of our approach. Though the efficiencies decrease as

the number of cores increases, Figure 4.10 shows that the execution times

4.6. Results 123

continue to decrease even on 512 cores, with most datasets eventually

requiring less than 20 seconds on 512 cores.

Random behaves a bit worse than the other datasets, presenting the

biggest drop in efficiency: from the best efficiency on one node (close to

100%) to one of the worst one on 512 cores (close to 26%). This is explained

by the output-sensitivity of our algorithm. The more pairs are present in

the output persistence diagram, the greater the workload. Another factor

is the spatial placement of the birth and death of a pair within the dataset.

The further apart they are, the longer the computation will be. Random

is one of the noisiest of our datasets (with Magnetic Reconnection and

Synthetic Truss), however, unlike those two datasets its pairs are evenly

distributed. Consequently, the birth and death tend to be further apart

spatially, requiring more work and more communications. This leads to

very good efficiency on one node, but this quickly becomes a performance

issue as the number of nodes increases, leading to such an efficiency drop.

4.6.4 Weak scaling

The weak scaling results for all datasets are shown in Figure 4.9 (right) in

terms of parallel efficiency (see Section 2.2.6). The weak scaling efficiency

is better than the strong scaling one for most datasets. This is partly due to

the fact that doubling the dataset size through re-sampling often results in

less than a twofold increase in the number of critical simplices, and hence

in computational workload (given the output sensitivity of our algorithm).

For most datasets, the efficiency is in the range of 35% to 80% on 16 nodes,

which again shows the scalability of our approach. There are however two

exceptions: Random and Magnetic Reconnection. For Random, the effi-

ciency eventually drops lower to 17 % for the same reasons as in strong

scaling: its pairs are numerous and spatially stretched out. For Magnetic

Reconnection, the efficiency largely exceeds 100%. This is due to the up-

sampling of the original dataset that barely multiplies the number of pairs

by a factor of 1.6 between 1 and 16 nodes. This is most likely because

the topological features are already numerous and unevenly distributed

across the dataset. While this also applies to other datasets, such as Isabel,

the other specificity of Magnetic Reconnection is that it produces the most

pairs out of all the datasets on 5123 (35 millions). The execution time for

D0, D1 and D2 is therefore substantial compared to the computation of

other steps, such as the gradient. As the number of nodes increases, even

though the size of the dataset increases, each process actually computes

124

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

32(1) 64(2) 128(4) 256(8) 512(16)

101

102

Cores(Nodes)

E
x
e
c
u
ti
o
n
ti
m
e
in

se
c
o
n
d
s
(l
o
g
sc
a
le
)

Execution time comparison to the original DMS

32(1) 64(2) 128(4) 256(8) 512(16)
0

50

100

150

Cores(Nodes)

P
e
a
k
m
e
m
o
ry

(G
o
)

Memory comparison to the original DMS

synthetic

wavelet

elevation

magnetic

isabel

random

backpack

isotropic

Figure 4.10 – Comparison between DMS (dotted lines) and DDMS (full lines) in terms

of execution time (left) and per-node peak memory footprint (right).

less and less pairs leading to lower execution times. The same applies for

Isabel, but has no impact on the overall execution time, as the computa-

tion of D0, D1 and D2 is originally negligible compared to the gradient

computation.

4.6.5 Performance comparison

Comparison with DMS: In Figure 4.10 are shown the execution time and

per-node peak memory footprint of our DDMS algorithm compared to

the original DMS algorithm on one node. For all datasets, the execution

times of both algorithms are comparable on one node, the distributed

DDMS algorithm executing slightly faster than its shared-memory coun-

terpart for all datasets, except Synthetic Truss and Magnetic Reconnection.

The DDMS extra cost for these two datasets is due to changes in the al-

gorithm (for example, the removal of arc collapse in the D0 and D2 com-

putations in Section 4.4.3) or to more costly data structures (Section 4.4.2),

enabling MPI execution. The overhead is however very limited and exe-

cuting DDMS on two nodes already outperforms DMS for all datasets.

In terms of peak memory footprint, DDMS uses significantly less mem-

ory for all datasets. This is due to our reduction of vector size to the num-

ber of critical simplices as mentioned in Section 4.4.3 and Section 4.5.1.

This allowed DDMS to produce an overall smaller footprint on one node.

Comparison with DIPHA: We now compare our algorithm to DIPHA, to

our knowledge the only publicly available MPI implementation (without

multithreading) for persistence diagram computation. The DIPHA execu-

tion time is measured using the built-in benchmark mode and corresponds

to its total execution without the I/O time. We start by comparing the

execution times in strong scaling on Figure 4.11. On one core, DDMS

4.6. Results 125

1(1) 32(1) 64(2) 128(4) 256(8) 512(16)

101

102

103

Cores(Nodes)

E
x
e
c
u
ti
o
n
ti
m
e
in

se
c
o
n
d
s
(l
o
g
sc
a
le
)

Execution time comparison to DIPHA

1(1) 32(1) 64(2) 128(4) 256(8) 512(16)

100

101

Cores(Nodes)

P
e
rf
o
rm

a
n
c
e
g
a
in

(l
o
g
sc
a
le
)

Performance gain between DIPHA and DDMS

synthetic

wavelet

elevation

magnetic

isabel

random

backpack

isotropic

Figure 4.11 – Comparison based on execution time (left) between DIPHA (dotted lines)

and DDMS (full lines) and performance gain (right) for a strong scaling setting. The

performance gain on a given number of cores is defined as tDIPHA/tDDMS, with tDIPHA

and tDDMS the execution times of DIPHA and DDMS respectively. A performance gain

higher than 1 means that DDMS is faster than DIPHA.

outperforms DIPHA only on the smoother datasets (Elevation, Wavelet,

Isabel and Backpack), as these can really harness the preconditioning of

the discrete gradient to speed up the rest of the computation. On multiple

nodes, DDMS scales much better and hence outperforms DIPHA for all

datasets starting from 4 nodes. Notice than on one and two nodes, only

one dataset out of eight (Magnetic Reconnection) is more efficiently pro-

cessed by DIPHA. Moreover, considering both execution times and scaling,

the worst case dataset for DIPHA (Synthetic Truss) scales relatively well

for DDMS, whereas the worst case for DDMS (Random) is always pro-

cessed faster (up to ×3) by DDMS on more than one core. Finally, the

average speedup for all datasets is around ×8 on 512 cores, showing a

substantial performance gain of DDMS over DIPHA.

Figure 4.12 compares the memory consumption of both approaches.

On the fewest number of nodes, DIPHA requires a lower footprint than

DDMS for all datasets but the memory scalability is much better for

DDMS. Hence, on the largest number of nodes the peak memory foot-

print of DDMS ends up being smaller than that of DIPHA. DDMS divides

indeed by almost two its memory usage (with a small overhead due to

the ghost cells) every time the number of cores is multiplied by two (Sec-

tion 3.2).

For DIPHA, its data distribution is more conducive to memory imbal-

ance as the final reduced columns are stored on the process that com-

pleted their reduction, meaning that some process may store a signifi-

cantly higher number of reduced columns than other processes. This im-

126

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

32(1) 64(2) 128(4) 256(8) 512(16)

101

102

Cores(Nodes)

P
e
a
k
m
e
m
o
ry

in
G
o
(l
o
g
sc
a
le
)

Memory comparison to DIPHA

32(1) 64(2) 128(4) 256(8) 512(16)

1

2

3

4

Cores(Nodes)

M
e
m
o
ry

g
a
in

Memory gain between DIPHA and DDMS

synthetic

wavelet

elevation

magnetic

isabel

random

backpack

isotropic

Figure 4.12 – Maximum over all nodes of the per-node peak memory footprint (left) for

DIPHA (dotted lines) and DDMS (full lines) and memory gain (right) for a strong scal-

ing setting. The memory gain on a given number of nodes is defined as mDIPHA/mDDMS,

with mDIPHA and mDDMS the maximum over all node of the per-node peak memory foot-

print for DIPHA and DDMS respectively. A memory gain higher than 1 means that

DIPHA uses more memory than DDMS.

balance is more likely as the number of processes increases, leading to

DIPHA having a larger per-node peak memory footprint than DDMS.

4.6.6 Example

We ran DDMS on a larger dataset (Turbulent Channel Flow [Kla20]) to

show our algorithm’s capability to handle massive datasets. This dataset

is a direct simulation of a fully developed flow at different Reynolds num-

bers in a plane channel. The scalar field is the three dimensional pres-

sure field and has been converted to single-precision floating-point num-

bers for a lower memory consumption. The computation was run on a

subset of the original dataset of size 2048x1920x1536 which is approxi-

mately 6 billion vertices. The memory bottleneck of our implementation

mainly lies in the computation of the discrete gradient, which is the most

memory-consuming step. For this example, we used TTK’s compile op-

tion TTK_ENABLE_DCG_OPTIMIZE_MEMORY which optimizes the gradi-

ent memory footprint (by trading on its computation time). The execution

was performed on 16 nodes of 32 cores and 256GB of RAM each (512 cores

and 4096GB of RAM total). The persistence diagram shown in Figure 4.13

was computed in 174 seconds and contained a little under 19 million pairs.

For comparison, out-of-core techniques [Wag23] require several hours of

computation for datasets of similar size, which further illustrates the prac-

tical interest of our work for high-performance computing contexts.

4.6. Results 127

Figure 4.13 – Persistence diagram on a subset of Turbulent Channel Flow

(2048x1920x1536, 6 billion vertices). The dataset (left) is the pressure field of a direct

simulation of a turbulent flow in a plane channel. The execution was performed on 16

nodes of 32 cores and 256GB of RAM each (512 cores and 4096GB of RAM total). The

persistence diagram (right: D0 in blue, D1 in orange, D2 in yellow) was computed in

174 seconds (19 million pairs).

4.6.7 Limitations

For completeness, we discuss here some limitations of our work. Our im-

plementation of the DDMS algorithm only supports structured grids at the

time of writing this manuscript, even though TTK support both structured

and unstructured grids. Although the original DMS implementation has

been validated on both, additional tests would be required to validate our

DDMS implementation on unstructured grids. Additionally, several spe-

cialized domain representations popular in scientific computing such as

adaptive mesh refinement (AMR) are not supported by TTK and therefore

by our work.

The primary memory bottleneck of our implementation lies in the

computation of the gradient. Indeed, this computation is not only costly in

terms of execution time but also in terms of memory footprint, as discrete

vectors are computed for all simplices of all dimensions. This generates a

significant memory footprint, which may be addressed in the future by an

improved compact encoding of the discrete vectors, exploiting the regular

structures of structured grids.

Finally, similarly to DMS, since our work also exploits Robins’ dis-

crete gradient [RWS11], it suffers from the same limitation regarding an

extension to higher dimensions. In particular, strong guarantees on the re-

striction of critical cells upon homology changes of the sub-complexes are

provided in up to three dimensions. Beyond, additional, spurious critical

cells may appear, limiting the effectiveness of our approach.

128

Chapter 4. Distributed Discrete Morse Sandwich: Efficient Computation of Persistence
Diagrams for Massive Scalar Data

4.7 Summary

This chapter introduced a new algorithm for the efficient computation of

the persistence diagram on scalar data in a distributed-memory setting

using a hybrid MPI+thread parallelization. The performance of our al-

gorithm was tested on a set of 8 datasets representing various use cases.

Thanks to our algorithmic improvements for D0, D1 and D2, and to the

scalability of the discrete gradient computation, we have shown that our

approach delivers significant speedups on up to 512 cores, with parallel

efficiencies up to 50% in strong scaling and up to 80% in weak scaling.

DDMS also outperforms DIPHA, the only publicly available implementa-

tion for computing the persistence diagram in distributed-memory, by a

factor of ×8 on average. It produces a slightly larger memory footprint

than DIPHA on few nodes, but a smaller one on 16 nodes.

Additionally, we showed that our algorithm is capable of processing

massive datasets by running DDMS on a larger dataset (Turbulent Chan-

nel Flow [Kla20]) of 6 billion vertices in under 3 minutes on 512 cores.

5Conclusion

In this thesis, we focused on high-performance approaches for the

distributed-memory computation of topological representations of

very large datasets. The aim is to provide efficient and robust methods

and tools to compute topological representations of larger than ever be-

fore datasets in a high-performance context (i.e. on a supercomputer). An

effort has also been made to ensure accessibility and re-usability of our

contributions. Our work aims at being a foundation stone in building a

wide-ranging unified ensemble of methods and implementations for com-

puting topological representations in a distributed-memory setting.

5.1 Summary of Contributions

The contributions of this thesis are twofold: we first added distributed-

memory support to the core of the existing library the Topology ToolKit and

then we used these new features to provide a new efficient distributed-

memory approach for the computation of persistence diagrams. This work

has been integrated into TTK and significantly enhances its applicability

to large-scale data analysis tasks, making it a valuable tool for researchers

and practitioners dealing with complex topological computations.

5.1.1 A Software Framework for Distributed Topological Analysis
Pipelines

In this first effort towards distributed-memory computation for Topolog-

ical Data Analysis, we introduced in Chapter 3 a software framework

designed to support topological analysis pipelines within a distributed-

memory environment. Specifically, we integrated this new support into

TTK, using the Message Passing Interface (MPI) while preserving its shared-

memory parallelism. Modifications were applied to TTK’s data structure,

131

132 Chapter 5. Conclusion

the triangulation, to efficiently adapt to a distributed-memory setting and

to provide key features for future implementations of topological algo-

rithms in such a setting. An additional software infrastructure was de-

veloped, at both a fine grain and high level, to facilitate the construction

of advanced topological pipelines. The resulting software offers a unified

framework supporting both triangulated domains and regular grids. Sev-

eral existing algorithms were adapted to a distributed-memory context,

resulting in hybrid MPI+thread parallel implementations. A taxonomy

was proposed to categorize these algorithms by their communication re-

quirements. Our performance evaluations demonstrated parallel efficien-

cies ranging from 20% to 80%, depending on the algorithm, with mini-

mal overhead introduced by our MPI-specific preconditioning. Finally, to

showcase TTK’s new large scale capabilities, we presented an advanced

analysis pipeline that integrates multiple algorithms and processes the

largest publicly available dataset we have found, comprising 120 billion

vertices, on 64 nodes of a supercomputer (for 1,536 cores in total).

5.1.2 Efficient Computation of Persistence Diagrams for Massive Scalar
Data

The previous section focused on a general unified framework. Distributed-

memory support was added to several topological algorithms, however

these algorithms were relatively simple to parallelize. In this second stage,

described in Chapter 4, we used our framework and focused on pro-

viding distributed-memory support to a much more complex algorithm:

the Discrete Morse Sandwich, currently the most efficient shared-memory

parallel approach to compute persistence diagrams. We provided a new

method, the Distributed Discrete Morse Sandwich, a hybrid MPI+thread

algorithm that enables efficient computation of persistence diagrams for

scalar fields of significant sizes. This method is composed of two differ-

ent algorithms: (i) the first is an extension of DMS’s unstable and sta-

ble set compression procedure, and provides a self-correcting distributed

pairing for (0, 1) and (d− 1, d) critical simplices and (ii) the second is an

extension of DMS’s PairCriticalSimplices procedure and exploits a commu-

nication thread to improve reactivity and performance for the pairing of

(1, 2) critical simplices. Extensive testings showed that the overall proce-

dure is output sensitive and provides substantial gains over the original

DMS approach as well as DIPHA (8 times faster on average on 512 cores),

the reference method for computing persistence diagrams in a distributed

5.2. Discussion 133

setting. To showcase TTK’s new capabilities, the persistence diagram of a

dataset of 6 billion vertices was computed, using 512 cores, in 174 seconds.

5.2 Discussion

The limitations and discussions regarding our various contributions have

been addressed in their respective chapters. Nonetheless, we would like

to underscore a few additional noteworthy aspects related to distributed

Topological Data Analysis and the Topology ToolKit.

TTK algorithms can be accessed through dependency-free standalone

C++ executables. Though it is technically possible to execute these stan-

dalone executables in a distributed-memory setting, we have not done so.

We have accessed TTK algorithms using ParaView instead (both its GUI

and Python3 APIs), as it can easily perform operations such as distribut-

ing the data across nodes or generating the ghost simplices. In their cur-

rent state, standalone executables are not very practical in a distributed-

memory setting from a user’s point of view, as they would require pro-

gramming a significant amount of code to perform the operations we have

relied on ParaView to execute.

TTK’s MPI extension is heavily dependent on ParaView. It facili-

tated numerous computation steps, such as data distribution, distributed

file writing and reading or ghost generation. It was a welcome help as

these operations can be quite complex and time-consuming to imple-

ment. However, it also means that we have to adapt to the decisions

made by ParaView’s developers. For example, ParaView’s MPI extension

technically does not support thread. Only the basic thread support level

(MPI_THREAD_SINGLE) is possible. In practice, there is a workaround

using environment variables at runtime but it is MPI-implementation de-

pendent and not conform to the MPI standard.

AMR (Adaptive Mesh Refinement) grids are not implemented in TTK.

Though it was somewhat limiting when TTK was restricted to a shared-

memory setting, its addition may become a bit more pressing. Indeed,

this type of grid tends to be used a lot in applications that process vo-

luminous datasets, such as astrophysics and cosmology, to reduce their

memory footprint and computation time. AMR therefore becomes a more

important feature when increasing the scale of the computation. Now

that TTK can be used a distributed-memory setting, more applications for

which TDA algorithms would be useful may require AMR grids. This is

134 Chapter 5. Conclusion

not a straightforward or simple addition as it would require to implement

a new triangulation data structure.

An additional limitation of our work is that not all of TTK algorithms

have been adapted to distributed-memory execution. In fact, for now,

though such support has been added to several algorithms, a minority of

TTK algorithms are parallelized for a distributed-memory setting. We will

discuss this in more detail in the next section.

5.3 Perspectives

There are four axes of future work: improving and extending the core of

the framework, adding distributed-memory support to more algorithms,

adding support for a different type of parallelism and building on the

distributed-memory algorithm to implement out-of-core computation.

5.3.1 Investigating the cost of ghost simplices generation

The generation of ghost simplices is the costliest MPI-related precondition-

ing step, in terms of execution time, as seen in the results of Chapter 3.

ParaView’s algorithm focuses on robustness and genericity to provide a

reliable solution for its many data formats. This makes for a very costly

step in our preconditioning. Designing our own algorithm could allow

us to implement different algorithms for each of our triangulation types

(i.e. implicit and explicit) and exploit properties specific to each of our

triangulation data structures, such as the regularity of the implicit trian-

gulation. This would most likely allow to speed up the computation for

certain types of triangulation.

5.3.2 Adding distributed-memory support to NC and DIC algorithms

The port of No Communication (NC) and Data-Independent Communi-

cations (DIC) algorithms (such as ContinuousScatterPlot, ManifoldCheck,

DistanceField, JacobiSet or FiberSurface) is relatively straightforward (see

Section 3.5.1 for a definition of the categories). For DIC algorithms, the

initial step entails identifying the data to be exchanged, the processes in-

volved in the exchange, and the appropriate timing for performing these

communications. For NC algorithms, no exchange between processes take

place. Then, the implementation can be done in TTK, using TTK’s MPI-

API as well as low-level MPI directives (for specific communications). The

necessary modifications would likely demand only a limited understand-

5.3. Perspectives 135

ing of distributed-memory computing and MPI. This could for example

be done during a hackathon.

5.3.2.1 Adding distributed-memory support to DDC algorithms

For Data-Dependent Communications (DDC) algorithms (such as Discrete

Morse Sandwich, topological simplification, contour tree or Rips complex

computations), the port may be much more complicated. For each of

these DDC algorithms, their distributed-memory parallelization may be a

substantial research problem. For example, the Discrete Morse Sandwich

algorithm required significant changes and time-investment to provide the

results shown in Chapter 4. In continuity of our work, one could explore

the use of the discrete gradient as an accelerating preconditioning step for

other algorithms. Lukasczyk et al. have used a descending manifold to

accelerate the computation of an augmented merge tree, a representation

very similar to the persistence diagram, in [LWW+
23]. Therefore, the com-

putation of the merge tree may be a good candidate. Another algorithm

that could see its distributed support relying on similar methodology to

DMS is TTK’s topological simplification, that uses mechanisms similar to

DMS’s homologous propagation.

5.3.2.2 Porting on many-core architectures

As said in Section 2.2.5, in this work, we did not produce algorithms

nor implementations adapted to GPUs. Our first goal was to address

the memory bottleneck of current TDA algorithms by adding support

to a distributed-memory setting. However, efforts to adapt TDA algo-

rithms to many-core architectures exist (such as VTK-m [MAB+
24]) and

the widespread availability of GPU nodes drive us to consider such direc-

tion of research for future work. A hybrid MPI+X setting, where X is a

paradigm for many-core architecture, would solve the memory footprint

issue while allowing the use of GPUs. NC algorithms, such as Critical

Points or the discrete gradient, will most likely result in significant perfor-

mance gains in such a setting. It may also be the case of compute-intensive

DIC algorithms. However, it will be very complex and time-consuming to

adapt DDC algorithms to many-core parallelism. For example, in the case

of DDMS, though the discrete gradient will likely induce a significant per-

formance gain on a GPU, the rest of the algorithm that pairs the critical

simplices would need to be significantly re-designed as it is currently not

136 Chapter 5. Conclusion

well suited for GPUs. Indeed, the approach requires multiple irregular

data accesses and uses irregular data structures such as maps.

An avenue for further research is deploying DDMS on heterogenous

architectures. Given the gradient algorithm’s embarrassingly parallel na-

ture, CPU architectures with integrated GPUs, such as the AMD Instinct

MI300A APU, may further accelerate DDMS by leveraging GPU cores for

the gradient computation and CPU cores for the computation of D0, D1

and D2.

5.3.2.3 Porting to out-of-core computation

Another research direction is out-of-core computation, which enables pro-

cessing large datasets on a single compute server by offloading some of the

data present in the RAM to some other storage such as disk. Specifically,

extensions of our self-correcting pairing (for D0 and D2, Section 4.4.3)

as well as our anticipation strategy for homologous propagation (for D1,

Section 4.5.2) could be considered for out-of-core contexts, but significant

adaptations would be required to maintain the time performance of our

approach.

AAppendix: Data Specification

This appendix provides a list of the datasets used in this thesis. In

particular, we document the data provenance and its representation.

All of these ensemble datasets were extracted from public repositories or

generated using open-source software. The dimensions given here are the

dimensions of the original dataset. In our experiments, datasets have been

resized depending on the need of the test.

Isabel: Magnitude of the wind velocity in a simulation

of hurricane Isabel that hit the east coast of the

USA in 2003. This dataset is very smooth and

possesses few but significant topological fea-

tures.

Regular grid of dimensions 250× 250× 50.

From [Con04].

Backpack: Density in the CT scan of a backpack with

items. This dataset is spatially imbalanced

with regard to its topological features and a

good test case for workload balancing.

Regular grid of dimensions 512× 512× 373.

From [Kla20].

139

140 Appendix A. Appendix: Data Specification

Elevation: Synthetic dataset of the altitude within a cube,

with a unique maximum at one corner of the

cube and a unique minimum at the opposite

corner. This dataset is a pathological case with

almost no topological feature.

Generated through ParaView’s Elevation filter.

Wavelet: Synthetic dataset of wavelets, following a

parametrized sinusoid in 3 dimensions. This

dataset is quite smooth and symmetric with

small topological features and results in good

workload balance.

Generated through ParaView’s Wavelet filter.

Isotropic pressure: Pressure field of a simulation of forced

isotropic turbulence. This dataset is neither

smooth nor very noisy with relatively evenly

spread out topological features.

Regular grid of dimensions 4096× 4096× 4096.

From [Kla20].

Magnetic

reconnection:

Simulation of magnetic reconnection, show-

ing interaction between magnetic fields. This

dataset is extremely noisy and holds a very

large number of topological features.

Regular grid of dimensions 512× 512× 512.

From [Kla20].

141

Synthetic truss: Simulated CT scan of a truss with defects.

This dataset possesses very rich and symmetric

topological features.

Regular grid of dimensions 1200× 1200× 1200.

From [Kla20].

Random: Synthetic dataset of a random field. This

dataset is a pathological case where all of its

topological features are noise and therefore nu-

merous, small and evenly distributed.

Generated through ParaView’s RandomAt-

tributes filter.

AT: Simulation of the electronic density on the

Adenine Thymine complex. This dataset is

quite smooth.

Regular grid of dimensions 177× 95× 48.

From [TTK20].

Turbulent Channel

Flow:

Pressure field of a simulation of a fully devel-

oped flow at different Reynolds numbers in a

plane channel. To our knowledge, this is the

largest publicly available dataset in the field of

scientific visualization.

Regular grid of dimensions 10240 × 7680 ×
1536.

From [Kla20].

BAppendix:

comparing MPI+thread

configurations

This appendix provides additional tests of thread configurations for the

MPI+thread implementations of the parallel algorithms described in

Section 3.5.3. We compare the following MPI+threads configurations on

1 to 16 nodes for the algorithm IntegralLines: 2 × 12 and 1 × 24 as well

as a pure MPI configuration. The benchmark is run on the algorithm

IntegralLines, as it is the only Data Dependent Communication (DDC)

algorithm (see Section 3.5.1) of the four algorithms parallelized in Sec-

tion 3.5.3. This makes IntegralLines the most likely to be affected by such

configuration changes, as this algorithm generates numerous and unpre-

dictable communications. Furthermore, of the four algorithms, it is also

the one that could most benefit from dynamic load balancing as it is the

most subject to workload imbalance. The higher the number of threads

per process, the higher the number of cores involved in the same dynamic

load balancing. For the following results, we rely on Sorbonne Université’s

supercomputer MeSU-beta (the same supercomputer as in Chapter 3). It

is a compute cluster with 144 nodes of 24 cores each (totaling 3456 cores).

Its nodes are composed of 2 Intel Xeon E5-2670v3 (see Section 3.6 for more

details on MeSU-beta).

On top of having different numbers of threads and processes, each

configuration possess its own thread and process placements to ensure

threads are close to their originating process on the hardware to limit the

extra cost caused by NUMA nodes. In the pure MPI configuration, 24

processes are generated per node (with only 1 thread per process). Pro-

cesses are bound to sockets and mapped by cores (via the corresponding

OpenMPI options) in order to fill a node with processes of adjacent ranks.

143

144 Appendix B. Appendix: comparing MPI+thread configurations

24(1) 48(2) 96(4) 192(8) 384(16)
0

20

40

60

80

100

Cores(Nodes)

E
�
c
ie
n
c
y

MPI+thread 1x24

24(1) 48(2) 96(4) 192(8) 384(16)
0

20

40

60

80

100

Cores(Nodes)

MPI+thread 2x12

24(1) 48(2) 96(4) 192(8) 384(16)
0

20

40

60

80

100

Cores(Nodes)

E
�
c
ie
n
c
y

Pure MPI

wavelet

elevation

isabel

random

backpack

Figure B.1 – Comparing three configurations of MPI+thread of our novel distributed-

memory parallelism support for IntegralLines: MPI+thread 2× 12, where there are 2

processes on each node, with 12 threads each, MPI+thread 1× 24 where there is 1 process

on each node, with 24 threads each and pure MPI, where there are 24 processes on each

node (with therefore only 1 thread per process). The benchmark was computed on up to

16 nodes.

145

For the 1× 24 strategy, each process spawns 24 threads, with 1 process

per node. Processes are bound to nothing and mapped by node, with

threads bound to cores close to their originating process (via the corre-

sponding OpenMP features). For the 2× 12 strategy, each process spawns

12 threads, with 2 processes per node. The 2× 12 configuration is of in-

terest due to the hardware of the node: as mentioned before, each node

is composed of two processors (here, two Intel Xeon). This architecture

is quite common and induces Non Uniform Memory Access (NUMA) ef-

fects. The goal of the 2× 12 configuration is to reduce these NUMA effects

by having one process per processor of the node. In practice, each process

is bound to a socket, with its threads bound to the cores close to their

originating process. The associated threads will therefore always access

data close to that particular processor and this will limit the NUMA ef-

fects. However, having more processes induces more MPI overhead. The

gain therefore may not be worth the cost.

Results are shown in Figure B.1. The 2× 12 configuration yields higher

efficiencies than the pure MPI configuration for all datasets, thanks to

fewer communications and dynamic load balancing between threads of

the same process. On one node, the 2× 12 configuration is significantly

less efficient than 1× 24, as the MPI overhead has not been triggered yet

for 1× 24. For two nodes or more, the efficiency of most datasets is either

comparable or better for 1× 24 compared to 2× 12, to the exception of

Random. This is most likely because there is very little work to do, as

the computed integral lines are very short. In that case, the cost of the

dynamic load balancing of the OpenMP work is not worth the gain and

having more processes induces a more efficient execution.

In conclusion, the 1× 24 configuration is the overall most efficient con-

figuration compared to 2× 12 and pure MPI. The additional MPI overhead

is therefore costlier than the NUMA effects. For the same total number of

cores, minimizing the number of processes and maximizing the number

of threads provides the best performance.

Bibliography

[AAF+
12] Cédric Augonnet, Olivier Aumage, Nathalie Furmento,

Raymond Namyst, and Samuel Thibault. StarPU-MPI: Task

Programming over Clusters of Machines Enhanced with

Accelerators. In Jesper Larsson Träff, Siegfried Benkner,

and Jack J. Dongarra, editors, Recent Advances in the Message

Passing Interface, volume 7490 of Lecture Notes in Computer

Science, pages 298–299. Springer Berlin Heidelberg, 2012.

(Cited pages 34 and 39.)

[AGL05] James Ahrens, Berk Geveci, and Charles Law. ParaView:

An End-User Tool for Large-Data Visualization. The Visu-

alization Handbook, pages 717–731, 2005. (Cited pages 45

and 63.)

[AN15] Aditya Acharya and Vijay Natarajan. A parallel and mem-

ory efficient algorithm for constructing the contour tree. In

IEEE Pacific Visualization Symposium, pages 271–278, 2015.

(Cited page 49.)

[Ban67] T. F. Banchoff. Critical points and curvature for embedded

polyhedral surfaces. The American Mathematical Monthly,

45(1):245–256, 1967. (Cited page 18.)

[Bar94] S. A. Barannikov. The Framed Morse Complex and Its In-

variants. In ADVSOV. 1994. (Cited page 97.)

[Bau19] Ulrich Bauer. Ripser: efficient computation of Vietoris-

Rips persistence barcodes. Journal of Applied and Com-

putational Topology, 5:391–423, 2019. https://github.com/

Ripser/ripser/. (Cited pages 48, 97, and 98.)

[BBD+
12] George Bosilca, Aurelien Bouteiller, Anthony Danalis,

Thomas Herault, Pierre Lemarinier, and Jack Dongarra.

DAGuE: A generic distributed DAG engine for High Per-

formance Computing. Parallel Computing, 2012. (Cited

page 39.)

147

https://github.com/Ripser/ripser/
https://github.com/Ripser/ripser/

148 Bibliography

[BDSS18] Alexander Bock, Harish Doraiswamy, Adam Summers, and

Cláudio T. Silva. TopoAngler: Interactive Topology-Based

Extraction of Fishes. IEEE Transactions on Visualization and

Computer Graphics, 24(1):812–821, 2018. (Cited page 3.)

[BGL+
18] Harsh Bhatia, Attila G. Gyulassy, Vincenzo Lordi, John E.

Pask, Valerio Pascucci, and Peer-Timo Bremer. TopoMS:

Comprehensive Topological Exploration for Molecular and

Condensed-Matter Systems. Journal of Computational Chem-

istry, 39(16):936–952, 2018. (Cited page 3.)

[BJK+
95] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kusz-

maul, Charles E. Leiserson, Keith H. Randall, and Yuli

Zhou. Cilk: an efficient multithreaded runtime system.

ACM SIGPLAN Notices, 30(8):207–216, August 1995. (Cited

page 34.)

[BKR14a] Ulrich Bauer, Michael Kerber, and Jan Reininghaus.

Clear and Compress: Computing Persistent Homology in

Chunks. In Topological Methods in Data Analysis and Visual-

ization III, pages 103–117. Springer International Publishing,

2014. (Cited page 97.)

[BKR14b] Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Dis-

tributed computation of persistent homology. In Proceed-

ings of the Meeting on Algorithm Engineering & Expermiments,

pages 31–38, 2014. (Cited pages 4, 58, 97, and 98.)

[BKRW17] Ulrich Bauer, Michael Kerber, Jan Reininghaus, and

Hubert Wagner. Phat - persistent homology algo-

rithms toolbox. Journal of Symbolic Computation, 78:76–90,

2017. https://bitbucket.org/phat-code/phat/src/master/.

(Cited pages 48, 49, and 98.)

[BM14] Jean-Daniel Boissonnat and Clément Maria. The simplex

tree: An efficient data structure for general simplicial com-

plexes. Algorithmica, 70(3):406–427, 2014. (Cited page 48.)

[BMBF+
19] Talha Bin Masood, Joseph Budin, Martin Falk, Guillaume

Favelier, Christoph Garth, Charles Gueunet, Pierre Guil-

lou, Lutz Hofmann, Petar Hristov, Adhitya Kamakshidasan,

Christopher Kappe, Pavol Klacansky, Patrick Laurin, Joshua

https://bitbucket.org/phat-code/phat/src/master/

Bibliography 149

Levine, Jonas Lukasczyk, Daisuke Sakurai, Maxime Soler,

Peter Steneteg, Julien Tierny, Will Usher, Jules Vidal, and

Michal Wozniak. An Overview of the Topology ToolKit. In

TopoInVis, 2019. (Cited pages 45, 59, 100, and 119.)

[BW08] Sven Bachthaler and Daniel Weiskopf. Continuous Scatter-

plots. IEEE Transactions on Visualization and Computer Graph-

ics, 14:1428–1435, 2008. (Cited pages 49 and 74.)

[BWT+
11] P.T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day,

and J. Bell. Interactive exploration and analysis of large

scale simulations using topology-based data segmentation.

IEEE Transactions on Visualization and Computer Graphics,

17(9):1307–1324, 2011. (Cited page 3.)

[CBW+
12] Hank Childs, Eric Brugger, Brad Whitlock, Jeremy Mered-

ith, Sean Ahern, David Pugmire, Kathleen Biagas, Mark

Miller, Cyrus Harrison, Gunther H. Weber, Hari Krishnan,

Thomas Fogal, Allen Sanderson, Christoph Garth, E. Wes

Bethel, David Camp, Oliver Rübel, Marc Durant, Jean M.

Favre, and Paul Navrátil. VisIt: An End-User Tool For Vi-

sualizing and Analyzing Very Large Data. In High Perfor-

mance Visualization–Enabling Extreme-Scale Scientific Insight,

pages 357–372. October 2012. (Cited page 44.)

[CDC+
99] William Carlson, Jesse Draper, David Culler, Katherine

Yelick, Eugene Brooks, Karen Warren, and Lawrence Liv-

ermore. Introduction to UPC and language specification.

04 1999. (Cited page 40.)

[CDRFPB24] Riccardo Ceccaroni, Lorenzo Di Rocco, Umberto Fer-

raro Petrillo, and Pierpaolo Brutti. A Distributed Ap-

proach for Persistent Homology Computation on a Large

Scale. Journal of Symbolic Computation, 80:25510–25532, 2024.

(Cited page 99.)

[CGOS13] Frédéric Chazal, Leonidas J. Guibas, Steve Y. Oudot, and

Primoz Skraba. Persistence-Based Clustering in Rieman-

nian Manifolds. Journal of the ACM, 60(6), 2013. (Cited

page 3.)

150 Bibliography

[Con04] IEEE Visualization 2004 Contest. Simulation of the Isabel

hurricane. http://sciviscontest-staging.ieeevis.org/2004/

data.html, 2004. (Cited page 139.)

[CRW22] Hamish Carr, Oliver Ruebel, and Gunther Weber. Dis-

tributed Hierarchical Contour Trees. In IEEE Symposium

on Large Data Analysis and Visualization, pages 1–10, 2022.

(Cited page 58.)

[CSA00] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees

in all dimensions. In Symposium on Distributed Algorithms,

2000. (Cited page 27.)

[CSGE07] David Cheng, Viral Shah, John Gilbert, and

Alan Edelman. A Novel Parallel Sorting Algo-

rithm for Contemporary Architectures. 01 2007.

https://github.com/DIPHA/dipha/tree/master/externals/psort-

1.0. (Cited page 105.)

[CSvdP04] Hamish A. Carr, Jack Snoeyink, and Michiel van de Panne.

Simplifying Flexible Isosurfaces Using Local Geometric

Measures. In IEEE VIS, 2004. (Cited page 3.)

[CWS+21] Hamish A. Carr, Gunther H. Weber, Christopher M. Sewell,

Oliver Rübel, Patricia K. Fasel, and James P. Ahrens. Scal-

able Contour Tree Computation by Data Parallel Peak Prun-

ing. IEEE Transactions on Visualization and Computer Graphics,

27:2437–2454, 2021. (Cited page 49.)

[DF21] Lisandro Dalcin and Yao-Lung L. Fang. mpi4py: Status

Update After 12 Years of Development. Computing in Science

and Engineering, 23(4):47–54, July 2021. (Cited page 35.)

[Dil07] Scott Dillard. A contour tree library. https://github.com/

sedillard/libtourtre, 2007. (Cited page 48.)

[DN12a] Harish Doraiswamy and Vijay Natarajan. LibRG (Reeb

Graph computation). https://vgl.csa.iisc.ac.in/softwares.

php?pid=001, 2012. (Cited page 48.)

[DN12b] Harish Doraiswamy and Vijay Natarajan. Recon (Reeb

Graph computation). https://github.com/harishd10/

recon, 2012. (Cited page 48.)

http://sciviscontest-staging.ieeevis.org/2004/data.html
http://sciviscontest-staging.ieeevis.org/2004/data.html
https://github.com/sedillard/libtourtre
https://github.com/sedillard/libtourtre
https://vgl.csa.iisc.ac.in/softwares.php?pid=001
https://vgl.csa.iisc.ac.in/softwares.php?pid=001
https://github.com/harishd10/recon
https://github.com/harishd10/recon

Bibliography 151

[DT16] Alexandre Denis and François Trahay. MPI Overlap: Bench-

mark and Analysis. In 2016 45th International Conference

on Parallel Processing (ICPP), pages 258–267, 2016. (Cited

pages 39 and 119.)

[DTS+20] Harish Doraiswamy, Julien Tierny, Paulo J. S. Silva,

Luis Gustavo Nonato, and Cláudio T. Silva. TopoMap: A

0-dimensional Homology Preserving Projection of High-

Dimensional Data. IEEE Transactions on Visualization and

Computer Graphics, 27:561–571, 2020. (Cited pages 3 and 49.)

[EH04] Herbert Edelsbrunner and John Harer. Jacobi Sets of Multi-

ple Morse Functions. Cambridge Books Online, 2004. (Cited

pages 49 and 74.)

[EH09] H. Edelsbrunner and J. Harer. Computational Topology: An

Introduction. American Mathematical Society, 2009. (Cited

pages 2, 10, 26, 28, and 99.)

[EHNP03] Herbert Edelsbrunner, John Harer, Vijay Natarajan, and Va-

lerio Pascucci. Morse-Smale complexes for piecewise lin-

ear 3-manifolds. In Symposium on Computational Geometry,

pages 361–370, 2003. (Cited page 28.)

[ELZ02] Herbert Edelsbrunner, David Letscher, and Afra Zomoro-

dian. Topological Persistence and Simplification. Discrete

Computational Geometry, 28(4):511–533, 2002. (Cited pages 2

and 97.)

[EM90] Herbert Edelsbrunner and Ernst P Mucke. Simulation of

simplicity: a technique to cope with degenerate cases in ge-

ometric algorithms. ACM Transactions on Graphics, 9(1):66–

104, 1990. (Cited page 14.)

[EWS+10] H Carter Edwards, Alan B Williams, Gregory D Sjaardema,

David G Baur, and William K Cochran. SIERRA Toolkit

Computational Mesh Conceptual Model. Technical report,

Sandia National Laboratories, 2010. (Cited page 59.)

[FFST18] Guillaume Favelier, Noura Faraj, Brian Summa, and Julien

Tierny. Persistence Atlas for Critical Point Variability in

Ensembles. IEEE Transactions on Visualization and Computer

Graphics, 25(1):1152–1162, 2018. (Cited page 4.)

152 Bibliography

[FGT16] G. Favelier, C. Gueunet, and J. Tierny. Visualizing ensem-

bles of viscous fingers. In IEEE SciVis Contest, 2016. (Cited

page 3.)

[FKLM14] Brittany Fasy, Jisu Kim, Fabrizio Lecci, and Clément Maria.

Introduction to the R package TDA. https://CRAN.

R-project.org/package=TDA, 2014. (Cited page 48.)

[FL99] P. Frosini and C. Landi. Size theory as a topological tool for

computer vision. Pattern Recognition and Image Analysis, 9,

1999. (Cited page 97.)

[For98] Robin Forman. A User’s Guide to Discrete Morse Theory.

Séminaire Lotharingien de Combinatoire, 1998. (Cited pages 19,

97, and 98.)

[Fou] The R Foundation. The R project. https://www.r-project.

org/. (Cited page 48.)

[Fre42] H. Freudenthal. Simplizialzerlegungen von beschrankter

Flachheit. Annals of Mathematics, 43:580–582, 1942. (Cited

pages 47, 67, and 69.)

[GABCG+
14] D. Guenther, R. Alvarez-Boto, J. Contreras-Garcia, J.-P.

Piquemal, and J. Tierny. Characterizing Molecular Inter-

actions in Chemical Systems. IEEE Transactions on Visualiza-

tion and Computer Graphics, 20(12):2476–2485, 2014. (Cited

page 3.)

[GBG+
14] A. Gyulassy, P.T. Bremer, R. Grout, H. Kolla, J. Chen, and

V. Pascucci. Stability of dissipation elements: A case study

in combustion. Computer Graphics Forum, 33(3):51–60, 2014.

(Cited page 3.)

[GBP19] Attila Gyulassy, Peer-Timo Bremer, and Valerio Pas-

cucci. Shared-Memory Parallel Computation of Morse-

Smale Complexes with Improved Accuracy. IEEE Transac-

tions on Visualization and Computer Graphics, 25(1):1183–1192,

2019. (Cited pages 20 and 49.)

[GFJT16] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Contour

forests: Fast multi-threaded augmented contour trees. In

IEEE Symposium on Large Data Analysis and Visualization,

2016. (Cited page 49.)

https://CRAN.R-project.org/package=TDA
https://CRAN.R-project.org/package=TDA
https://www.r-project.org/
https://www.r-project.org/

Bibliography 153

[GFJT19a] Charles Gueunet, Pierre Fortin, Julien Jomier, and Julien

Tierny. Task-Based Augmented Contour Trees with Fi-

bonacci Heaps. IEEE Transactions on Parallel and Distributed

Systems, 30(8):1889–1905, 2019. (Cited pages 49, 50, and 74.)

[GFJT19b] Charles Gueunet, Pierre Fortin, Julien Jomier, and Julien

Tierny. Task-based Augmented Reeb Graphs with Dynamic

ST-Trees. In Eurographics Symposium on Parallel Graphics and

Visualization (EGPGV), 2019. (Cited pages 49 and 74.)

[GKL+
16] A. Gyulassy, A. Knoll, K.C. Lau, B. Wang, P.T. Bremer,

M.E. Papka, L. A. Curtiss, and V. Pascucci. Interstitial and

Interlayer Ion Diffusion Geometry Extraction in Graphitic

Nanosphere Battery Materials. IEEE Transactions on Visu-

alization and Computer Graphics, 22(1):916–925, 2016. (Cited

page 3.)

[GRWH12] David Günther, Jan Reininghaus, Hubert Wagner, and In-

grid Hotz. Efficient computation of 3d morse-smale com-

plexes and persistent homology using discrete morse the-

ory. The Visual Computer, 2012. (Cited page 98.)

[GST14] David Günther, Joseph Salmon, and Julien Tierny. Manda-

tory critical points of 2D uncertain scalar fields. Computer

Graphics Forum, 2014. (Cited page 49.)

[Gue19] Charles Gueunet. High Performance Level-Set Based Topolog-

ical Data Analysis. PhD thesis, Sorbonne Université, 2019.

(Cited page 10.)

[GVT23] Pierre Guillou, Jules Vidal, and Julien Tierny. Discrete

Morse Sandwich: Fast Computation of Persistence Dia-

grams for Scalar Data – An Algorithm and A Benchmark.

IEEE Transactions on Visualization and Computer Graphics,

2023. (Cited pages 3, 5, 49, 74, 98, 100, 102, 111, and 120.)

[HKP+
21] Xuan Huang, Pavol Klacansky, Steve Petruzza, Attila Gyu-

lassy, Peer-Timo Bremer, and Valerio Pascucci. Distributed

merge forest: a new fast and scalable approach for topolog-

ical analysis at scale. In Huiyang Zhou, Jose Moreira, Frank

Mueller, and Yoav Etsion, editors, International Conference on

Supercomputing, pages 367–377. ACM, 2021. (Cited page 58.)

154 Bibliography

[HLH+
16] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Flori-

ani, G. Scheuermann, H. Hagen, and C. Garth. A survey of

topology-based methods in visualization. Computer Graph-

ics Forum, 35(3):643–667, 2016. (Cited page 2.)

[HP18] Gregory Henselman-Petrusek. Eirene.jl package for homo-

logical algebra. https://github.com/Eetion/Eirene.jl, 2018.

(Cited page 98.)

[HSSW11] Georg Hager, Gerald Schubert, Thomas Schoenemeyer, and

Gerhard Wellein. Prospects for Truly Asynchronous Com-

munication with Pure MPI and Hybrid MPI/OpenMP on

Current Supercomputing Platforms. The Cray User Group,

2011. (Cited pages 39 and 119.)

[Inta] Intel Corporation. Open Source Code of

oneAPI Threading Building Blocks (oneTBB) .

https://github.com/uxlfoundation/oneTBB. (Cited

page 34.)

[Intb] Intel Corporation. Specifications of

oneAPI Threading Building Blocks (oneTBB).

https://uxlfoundation.github.io/oneTBB/. (Cited

page 34.)

[ISSS16] Daniel Ibanez, E. Seegyoung Seol, Cameron W. Smith, and

Mark S. Shephard. PUMI: parallel unstructured mesh in-

frastructure. ACM Transactions on Mathematical Software,

42(3), 2016. (Cited page 59.)

[Iur21] Federico Iuricich. Persistence cycles for visual exploration

of persistent homology. IEEE Transactions on Visualization

and Computer Graphics, 28:4966–4979, 2021. https://github.

com/IuricichF/PersistenceCycles. (Cited page 98.)

[Kel17] Bryn Keller. Python bindings for PHAT. https://pypi.org/

project/phat/, 2017. (Cited page 48.)

[Khr25] The Khronos Group Inc. The OpenCL specification ver-

sion 3.0.18, 2025. https://registry.khronos.org/OpenCL/.

(Cited page 42.)

[Kit03] Kitware, Inc. The Visualization Toolkit User’s Guide, 2003.

(Cited page 44.)

https://github.com/Eetion/Eirene.jl
https://github.com/IuricichF/PersistenceCycles
https://github.com/IuricichF/PersistenceCycles
https://pypi.org/project/phat/
https://pypi.org/project/phat/

Bibliography 155

[KK93] Laxmikant V. Kale and Sanjeev Krishnan. Charm++: a

portable concurrent object oriented system based on C++.

SIGPLAN Notices, 28(10):91–108, October 1993. (Cited

page 34.)

[Kla20] Pavol Klacansky. Open Scientific Visualization Data Sets.

https://klacansky.com/open-scivis-datasets/, 2020. (Cited

pages 80, 81, 120, 126, 128, 139, 140, and 141.)

[KRHH11] J. Kasten, J. Reininghaus, I. Hotz, and H.C. Hege. Two-

dimensional time-dependent vortex regions based on the

acceleration magnitude. IEEE Transactions on Visualiza-

tion and Computer Graphics, 17(12):2080–2087, 2011. (Cited

page 3.)

[KTCG17] Pavol Klacansky, Julien Tierny, Hamish A. Carr, and Zhao

Geng. Fast and Exact Fiber Surfaces for Tetrahedral Meshes.

IEEE Transactions on Visualization and Computer Graphics,

2017. (Cited pages 49 and 74.)

[Kuh60] H.W. Kuhn. Some combinatorial lemmas in topology. IBM

Journal of Research and Development, 45:518–524, 1960. (Cited

pages 47, 67, and 69.)

[KVT19] Max Kontak, Jules Vidal, and Julien Tierny. Statistical pa-

rameter selection for clustering persistence diagrams. In

2019 IEEE/ACM UrgentHPC@SC, 2019. (Cited page 4.)

[LBCH22] Matthew Larsen, Eric Brugger, Hank Childs, and Cyrus

Harrison. Ascent: A Flyweight In Situ Library for Exascale

Simulations. In In Situ Visualization For Computational Sci-

ence, pages 255 – 279. Mathematics and Visualization book

series from Springer Publishing, Cham, Switzerland, May

2022. (Cited page 44.)

[LBM+
06] D. E. Laney, P.T. Bremer, A. Mascarenhas, P. Miller, and

V. Pascucci. Understanding the structure of the turbulent

mixing layer in hydrodynamic instabilities. IEEE Transac-

tions on Visualization and Computer Graphics, 12(5):1053–1060,

2006. (Cited page 3.)

[LGMT20] Jonas Lukasczyk, Christoph Garth, Ross Maciejewski, and

Julien Tierny. Localized topological simplification of scalar

https://klacansky.com/open-scivis-datasets/

156 Bibliography

data. IEEE Transactions on Visualization and Computer Graph-

ics, 27(2):572–582, 2020. (Cited pages 50 and 74.)

[LGW+
19] Jonas Lukasczyk, Christoph Garth, Gunther H. Weber, Tim

Biedert, Ross Maciejewski, and Heike Leitte. Dynamic

nested tracking graphs. IEEE Transactions on Visualization

and Computer Graphics, 26(1):249–258, 2019. (Cited page 4.)

[LI24] Guoxi Liu and Federico Iuricich. A task-parallel approach

for localized topological data structures. IEEE Transactions

on Visualization and Computer Graphics, 30:1271–1281, 2024.

(Cited page 49.)

[LWG+
24] Eve Le Guillou, Michael Will, Pierre Guillou, Jonas

Lukasczyk, Pierre Fortin, Christoph Garth, and Julien

Tierny. TTK is Getting MPI-Ready. IEEE Transactions on

Visualization and Computer Graphics, 30(8):5875–5892, 2024.

(Cited pages 54, 100, 105, and 120.)

[LWW+
23] Jonas Lukasczyk, Michael Will, Florian Wetzels, Gunther H.

Weber, and Christoph Garth. ExTreeM: Scalable Aug-

mented Merge Tree Computation via Extremum Graphs.

IEEE Transactions on Visualization and Computer Graphics,

30(1):1085–1094, 2023. (Cited pages 49 and 135.)

[MAB+
24] Kenneth Moreland, Tushar M Athawale, Vicente Bolea,

Mark Bolstad, Eric Brugger, Hank Childs, Axel Huebl, Li-

Ta Lo, Berk Geveci, Nicole Marsaglia, Sujin Philip, David

Pugmire, Silvio Rizzi, Zhe Wang, and Abhishek Yenpure.

Visualization at exascale: Making it all work with vtk-m.

The International Journal of High Performance Computing Ap-

plications, 38(5):508–526, 2024. (Cited pages 44 and 135.)

[MBGY14] Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and

Mariette Yvinec. The gudhi library: Simplicial complexes

and persistent homology. In Mathematical Software, 2014.

https://github.com/GUDHI/. (Cited pages 48 and 98.)

[MDN12] Senthilnathan Maadasamy, Harish Doraiswamy, and Vi-

jay Natarajan. A hybrid parallel algorithm for computing

and tracking level set topology. In International Conference

on High Performance Computing, pages 1–10, 2012. (Cited

page 49.)

https://github.com/GUDHI/

Bibliography 157

[Mes23] Message Passing Interface Forum. MPI: A Message-Passing

Interface Standard, Version 4.1.

https://www.mpi-forum.org/docs/mpi-4.1/

mpi41-report.pdf, 2023. (Cited pages 35 and 76.)

[Mil63] J. Milnor. Morse Theory. Princeton University Press, 1963.

(Cited pages 21 and 98.)

[MLT+
23] Robin Maack, Jonas Lukasczyk, Julien Tierny, Hans Ha-

gen, Ross Maciejewski, and Christoph Garth. Parallel Com-

putation of Piecewise Linear Morse-Smale Segmentations.

IEEE Transactions on Visualization and Computer Graphics,

30(4):1942–1955, 2023. (Cited pages 49 and 74.)

[MN12] Konstantin Mischaikow and Vidit Nanda. Morse theory for

filtrations and efficient computation of persistent homology.

Discrete & Computational Geometry, 50:330–353, 2012. (Cited

pages 48, 97, and 98.)

[MN20] Dmitriy Morozov and Arnur Nigmetov. Brief announce-

ment: Towards lockfree persistent homology. In Symposium

on Parallelism in Algorithms and Architectures, 2020. (Cited

pages 102 and 103.)

[Mor34] Marston Morse. The calculus of variations in the large. In

American Mathematical Society, 1934. (Cited pages 21 and 98.)

[Mor17] Dmitriy Morozov. Dionysus2. http://www.mrzv.org/

software/dionysus2, 2017. (Cited page 48.)

[MP16a] Dmitriy Morozov and Tom Peterka. Block-parallel data

analysis with DIY2. In Markus Hadwiger, Ross Maciejew-

ski, and Kenneth Moreland, editors, IEEE Symposium on

Large Data Analysis and Visualization, 2016. (Cited page 41.)

[MP16b] Dmitriy Morozov and Tom Peterka. Efficient Delaunay Tes-

sellation through K-D Tree Decomposition. In SC16: Inter-

national Conference for High Performance Computing, Network-

ing, Storage and Analysis, pages 728–738. IEEE, 2016. (Cited

page 41.)

[MW13] Dmitriy Morozov and Gunther H. Weber. Distributed

merge trees. In ACM Principles and Practice of Parallel Pro-

gramming, 2013. (Cited page 58.)

https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
http://www.mrzv.org/software/dionysus2
http://www.mrzv.org/software/dionysus2

158 Bibliography

[MW14] Dmitriy Morozov and Gunther H. Weber. Distributed con-

tour trees. In Topological Methods in Data Analysis and Visual-

ization III, Theory, Algorithms, and Applications. 2014. (Cited

page 58.)

[MWR+
16] Daniel Maljovec, Bei Wang, Paul Rosen, Andrea Alfonsi,

Giovanni Pastore, Cristian Rabiti, and Valerio Pascucci.

Topology-inspired partition-based sensitivity analysis and

visualization of nuclear simulations. In IEEE Pacific Visual-

ization Symposium, 2016. (Cited page 3.)

[Nan21] Vidit Nanda. Perseus, the persistent homology soft-

ware. http://people.maths.ox.ac.uk/nanda/perseus/,

2021. (Cited page 48.)

[NM19] Arnur Nigmetov and Dmitriy Morozov. Local-global merge

tree computation with local exchanges. In Proceedings of

the International Conference for High Performance Computing,

Networking, Storage and Analysis, 2019. (Cited page 58.)

[NM20] Arnur Nigmetov and Dmitriy Morozov. Reeber: A library

for shared- and distributed-memory parallel computation

of merge trees, 2020. https://github.com/mrzv/reeber.

(Cited pages 41 and 58.)

[NM24] Arnur Nigmetov and Dmitriy Morozov. Distributed

Computation of Persistent Cohomology. Unpublished,

https://arxiv.org/abs/2410.16553, 2024. (Cited page 99.)

[NR98] Robert W. Numrich and John Reid. Co-array fortran for

parallel programming. SIGPLAN Fortran Forum, 17(2):1–31,

August 1998. (Cited page 40.)

[NVBB+
22] Florent Nauleau, Fabien Vivodtzev, Thibault Bridel-

Bertomeu, Heloise Beaugendre, and Julien Tierny. Topo-

logical Analysis of Ensembles of Hydrodynamic Turbulent

Flows – An Experimental Study. In IEEE Symposium on

Large Data Analysis and Visualization, 2022. (Cited page 3.)

[Nvi25] Nvidia Corporation. CUDA C Programming Guide, Re-

lease 12.8, 2025. (Cited page 42.)

[OGT19] Malgorzata Olejniczak, André Severo Pereira Gomes, and

Julien Tierny. A Topological Data Analysis Perspective on

http://people.maths.ox.ac.uk/nanda/perseus/
https://github.com/mrzv/reeber

Bibliography 159

Non-Covalent Interactions in Relativistic Calculations. In-

ternational Journal of Quantum Chemistry, 120(8):e26133, 2019.

(Cited page 3.)

[Ope20] OpenMP Architecture Review Board. OpenMP

application program interface version 5.1, 2020.

https://www.openmp.org/specifications/. (Cited pages 31

and 38.)

[OT23] Malgorzata Olejniczak and Julien Tierny. Topological Data

Analysis of Vortices in the Magnetically-Induced Current

Density in LiH Molecule. Physical Chemistry Chemical

Physics, 2023. (Cited page 3.)

[PC04] Valerio Pascucci and Kree Cole-McLaughlin. Parallel Com-

putation of the Topology of Level Sets. Algorithmica, 2004.

(Cited page 58.)

[Pon23] Mathieu Pont. Analysis of Ensembles of Topological Descriptors.

PhD thesis, Sorbonne Université, 2023. (Cited page 10.)

[PT24] Mathieu Pont and Julien Tierny. Wasserstein Auto-Encoders

of Merge Trees (and Persistence Diagrams). IEEE Transac-

tions on Visualization and Computer Graphics, 2024. (Cited

page 49.)

[PVDT22] Mathieu Pont, Jules Vidal, Julie Delon, and Julien Tierny.

Wasserstein Distances, Geodesics and Barycenters of Merge

Trees. IEEE Transactions on Visualization and Computer Graph-

ics, 28(1):291–301, 2022. (Cited pages 49 and 50.)

[PVT23] Mathieu Pont, Jules Vidal, and Julien Tierny. Principal

Geodesic Analysis of Merge Trees (and Persistence Dia-

grams). IEEE Transactions on Visualization and Computer

Graphics, 2023. (Cited pages 49 and 50.)

[QLIF24] Yuehui Qian, Guoxi Liu, Federico Iuricich, and Leila De

Floriani. Efficient representation and analysis for a large

tetrahedral mesh using apache spark. In 2024 IEEE Topolog-

ical Data Analysis and Visualization (TopoInVis), pages 1–11,

2024. (Cited page 41.)

[Ree46] Georges Reeb. Sur les points singuliers d’une forme de Pfaff

complètement intégrable ou d’une fonction numérique.

160 Bibliography

Comptes Rendus des séances de l’Académie des sciences, 222(847-

849):76, 1946. (Cited page 28.)

[Rob99] Vanessa Robins. Toward computing homology from finite

approximations. Topology Proceedings, 1999. (Cited page 97.)

[RWS11] Vanessa Robins, Peter John Wood, and Adrian P. Sheppard.

Theory and Algorithms for Constructing Discrete Morse

Complexes from Grayscale Digital Images. IEEE Trans.

Pattern Anal. Mach. Intell., 33(8):1646–1658, 2011. (Cited

pages 20, 21, 49, 97, 98, 105, and 127.)

[SCI23] SCIRun, 2023. https://github.com/SCIInstitute/SCIRun.

(Cited page 44.)

[SDT24] Keanu Sisouk, Julie Delon, and Julien Tierny. Wasserstein

Dictionaries of Persistence Diagrams. IEEE Transactions on

Visualization and Computer Graphics, 2024. (Cited page 49.)

[SFLC18] Issam Said, Pierre Fortin, Jean-Luc Lamotte, and Henri

Calandra. Leveraging the accelerated processing units

for seismic imaging: A performance and power efficiency

comparison against CPUs and GPUs. International Journal

of High Performance Computing Applications, 32(6):819–837,

2018. (Cited page 39.)

[SM17] Dmitriy Smirnov and Dmitriy Morozov. Triplet Merge

Trees. In TopoInVis, 2017. (Cited pages 49 and 111.)

[SMC07] Gurjeet Singh, Facundo Memoli, and Gunnar Carlsson.

Topological Methods for the Analysis of High Dimensional

Data Sets and 3D Object Recognition. In M. Botsch, R. Pa-

jarola, B. Chen, and M. Zwicker, editors, Eurographics Sym-

posium on Point-Based Graphics. The Eurographics Associa-

tion, 2007. https://danifold.net/mapper/. (Cited page 48.)

[SN12] Nithin Shivashankar and Vijay Natarajan. Parallel Compu-

tation of 3D Morse-Smale Complexes. Computer Graphics

Forum, 31(3):965–974, 2012. (Cited page 49.)

[SN17] Nithin Shivashankar and Vijay Natarajan. Efficient Software

for Programmable Visual Analysis Using Morse-Smale

https://danifold.net/mapper/

Bibliography 161

Complexes. In Topological Methods in Data Analysis and Vi-

sualization IV, pages 317–331, Cham, 2017. Springer Inter-

national Publishing. https://vgl.csa.iisc.ac.in/mscomplex/

software.html. (Cited page 48.)

[Sou11] Thierry Sousbie. The Persistent Cosmic Web and its

Filamentary Structure: Theory and Implementations.

Royal Astronomical Society, 414(1):384–403, 2011. https:

//thierry-sousbie.github.io/DisPerSE/. (Cited pages 3

and 48.)

[SPCT18a] Maxime Soler, Mélanie Plainchault, Bruno Conche, and

Juilen Tierny. Lifted Wasserstein Matcher for Fast and Ro-

bust Topology Tracking. In IEEE Symposium on Large Data

Analysis and Visualization, 2018. (Cited page 4.)

[SPCT18b] Maxime Soler, Mélanie Plainchault, Bruno Conche, and

Julien Tierny. Topologically controlled lossy compres-

sion. In IEEE Pacific Visualization Symposium, 2018. (Cited

page 49.)

[SPD+
19] Maxime Soler, Martin Petitfrere, Gilles Darche, Melanie

Plainchault, Bruno Conche, and Julien Tierny. Ranking Vis-

cous Finger Simulations to an Acquired Ground Truth with

Topology-Aware Matchings. In IEEE Symposium on Large

Data Analysis and Visualization, 2019. (Cited pages 3 and 4.)

[SPN+
16] Nithin Shivashankar, Pratyush Pranav, Vijay Natarajan,

Rien van de Weygaert, EG Patrick Bos, and Steven Rieder.

Felix: A topology based framework for visual exploration

of cosmic filaments. IEEE Transactions on Visualization and

Computer Graphics, 22(6):1745–1759, 2016. (Cited page 3.)

[TC16] Julien Tierny and Hamish A. Carr. Jacobi Fiber Surfaces

for Bivariate Reeb Space Computation. IEEE Transactions on

Visualization and Computer Graphics, 2016. (Cited pages 49

and 74.)

[TFL+
17] Julien Tierny, Guillaume Favelier, Joshua A. Levine, Charles

Gueunet, and Michael Michaux. The Topology ToolKit.

IEEE Transactions on Visualization and Computer Graphics,

24(1):832–842, 2017. https://topology-tool-kit.github.io/.

https://vgl.csa.iisc.ac.in/mscomplex/software.html
https://vgl.csa.iisc.ac.in/mscomplex/software.html
https://thierry-sousbie.github.io/DisPerSE/
https://thierry-sousbie.github.io/DisPerSE/
https://topology-tool-kit.github.io/

162 Bibliography

(Cited pages 3, 4, 10, 45, 46, 47, 49, 59, 66, 69, 74, 100,

and 119.)

[TGSP09] Julien Tierny, Attila Gyulassy, Eddie Simon, and Valerio

Pascucci. Loop surgery for volumetric meshes: Reeb graphs

reduced to contour trees. IEEE Transactions on Visualiza-

tion and Computer Graphics, 15(6):1177–1184, 2009. (Cited

page 48.)

[Tie18] Julien Tierny. Topological Data Analysis for Scientific Visual-

ization. Springer, 2018. (Cited page 10.)

[top] top500.org. The top 500. https://top500.org/. (Cited

page 30.)

[TP12] Julien Tierny and Valerio Pascucci. Generalized topological

simplification of scalar fields on surfaces. IEEE Transactions

on Visualization and Computer Graphics, 2012. (Cited pages 50

and 74.)

[TSBO18] Christopher Tralie, Nathaniel Saul, and Rann Bar-On.

Ripser.py: A lean persistent homology library for python.

The Journal of Open Source Software, 3(29):925, Sep 2018.

(Cited page 48.)

[TTK20] TTK Contributors. TTK Data.

https://github.com/topology-tool-kit/ttk-data/tree/dev,

2020. (Cited pages 81, 120, and 141.)

[TTK22] TTK Contributors. TTK Online Example Database.

https://topology-tool-kit.github.io/examples/, 2022.

(Cited page 45.)

[TVJA14] Andrew Tausz, Mikael Vejdemo-Johansson, and Henry

Adams. JavaPlex: A research software package for persis-

tent (co)homology. In ICMS, 2014. http://appliedtopology.

github.io/javaplex/. (Cited page 48.)

[VBT20] Jules Vidal, Joseph Budin, and Julien Tierny. Pro-

gressive Wasserstein Barycenters of Persistence Diagrams.

IEEE Transactions on Visualization and Computer Graphics,

26(1):151–161, 2020. (Cited page 4.)

https://github.com/topology-tool-kit/ttk-data/tree/dev
https://topology-tool-kit.github.io/examples/
http://appliedtopology.github.io/javaplex/
http://appliedtopology.github.io/javaplex/

Bibliography 163

[Vid21] Jules Vidal. Progressivity in Topological Data Analysis. PhD

thesis, Sorbonne Université, 2021. (Cited page 10.)

[VKP+
15] Karthikeyan Vaidyanathan, Dhiraj D. Kalamkar, Kiran Pam-

nany, Jeff R. Hammond, Pavan Balaji, Dipankar Das, Jong-

soo Park, and Bàlint Joó. Improving concurrency and asyn-

chrony in multithreaded MPI applications using software

offloading. In SC ’15: Proceedings of the International Confer-

ence for High Performance Computing, Networking, Storage and

Analysis, pages 1–12, 2015. (Cited page 39.)

[Wag23] Hubert Wagner. Slice, Simplify and Stitch: Topology-

Preserving Simplification Scheme for Massive Voxel Data.

In Symposium on Computational Geometry, 2023. (Cited

pages 98 and 126.)

[WG21] Kilian Werner and Christoph Garth. Unordered Task-

Parallel Augmented Merge Tree Construction. IEEE Trans-

actions on Visualization and Computer Graphics, 2021. (Cited

page 58.)

[WPTG23] Florain Wetzels, Mathieu Pont, Julien Tierny, and Christoph

Garth. Merge Tree Geodesics and Barycenters with Path

Mappings. IEEE Transactions on Visualization and Computer

Graphics, 2023. (Cited page 49.)

[YBC+
07] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip

Colella, Kaushik Datta, Jason Duell, Susan L. Graham, Paul

Hargrove, Paul Hilfinger, Parry Husbands, Costin Iancu,

Amir Kamil, Rajesh Nishtala, Jimmy Su, Michael Welcome,

and Tong Wen. Productivity and performance using par-

titioned global address space languages. In Proceedings of

the 2007 International Workshop on Parallel Symbolic Computa-

tion, PASCO ’07, pages 24–32, New York, NY, USA, 2007.

Association for Computing Machinery. (Cited page 40.)

[ZAB+
19] Weiqun Zhang, Ann Almgren, Vince Beckner, John Bell,

Johannes Blaschke, Cy Chan, Marcus Day, Brian Friesen,

Kevin Gott, Daniel Graves, Max Katz, Andrew Myers,

Tan Nguyen, Andrew Nonaka, Michele Rosso, Samuel

Williams, and Michael Zingale. AMReX: A Framework

164 Bibliography

for Block-Structured Adaptive Mesh Refinement. Journal of

Open Source Software, 2019. (Cited pages 58 and 59.)

[ZC05] Afra Zomorodian and Gunnar Carlsson. Computing Per-

sistent Homology. Discrete and Computational Geometry,

33(2):249–274, 2005. (Cited page 48.)

[ZCD+
12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,

Ankur Dave, Justin Ma, Murphy McCauley, Michael J.

Franklin, Scott Shenker, and Ion Stoica. Resilient distributed

datasets: a fault-tolerant abstraction for in-memory clus-

ter computing. In Proceedings of the 9th USENIX Conference

on Networked Systems Design and Implementation, NSDI’12,

page 2, USA, 2012. USENIX Association. (Cited page 40.)

Distributed Topological Data Analysis
Topological Data Analysis (TDA) tackles the complexity of large-scale data by capturing its structural character-

istics in a concise encoding for analysis and visualization. As datasets grow, it becomes frequent for a single

dataset to exceed the memory limit of one machine, making distributed-memory systems, with their much larger

capacities, a necessary solution. However, adapting an algorithm for distributed-memory systems requires sub-

stantial changes to ensure correctness and performance. In particular, TDA algorithms face challenges in this

context, as they rely on global data accesses and multiple traversals with minimal computation, a combination

that often scales poorly in a distributed-memory context. Furthermore, existing distributed-memory implemen-

tations are mono-tailored for one particular topological representation which induces practical drawbacks. The

Topology ToolKit (TTK) aims at providing a unified framework for TDA algorithms with a reusable and efficient

data structure. However, TTK was up until now limited to shared-memory parallelism. In this thesis, we add

distributed support to TTK using the Message Passing Interface (MPI). First, we adapt TTK’s core data structure

and add distributed-memory support to several existing algorithms, both to demonstrate the new features and

highlight their performance. Performance tests showcase the efficiency of each algorithm as well as of the overall

software infrastructure. Additionally, we apply a real-life topological analysis pipeline to two massive datasets to

demonstrate our software’s effectiveness at scale. Then, we focus our effort on a much more complex abstraction:

the persistence diagram. Its robustness and reliability make it one of the most used topological representation. The

Discrete Morse Sandwich (DMS) is currently the most efficient algorithm for computing the diagram on one node.

Our new method, the Distributed Discrete Morse Sandwich (DDMS), builds upon DMS and introduces tailored

step-specific modifications, resulting in a hybrid MPI+thread implementation. Performance tests demonstrate the

gain of our approach over the original DMS method as well as DIPHA, the reference method for persistence dia-

gram computation in a distributed-memory context. Our method successfully computes persistence diagrams on

datasets containing up to 6 billion vertices.

Analyse Topologique de Données Distribuée
L’Analyse Topologique de Données (TDA) vise à encoder de manière concise les caractéristiques structurelles de

jeux de données afin de faciliter leur analyse et leur visualisation. Avec l’augmentation constante de la taille de

ces données, qui dépassent de plus en plus souvent la capacité mémoire d’un ordinateur, le recours à des systèmes

à mémoire distribuée, ou superordinateurs, offrant des ressources bien plus importantes, devient indispensable.

Toutefois, adapter un algorithme aux superordinateurs requiert des modifications substantielles pour assurer à la

fois l’exactitude des résultats et l’efficacité des calculs. Les algorithmes de TDA posent notamment des défis dans

ce contexte, car ils nécessitent un accès global aux données et plusieurs parcours du jeu de données, avec peu de

calculs, une combinaison qui passe généralement mal à l’échelle. De plus, les implémentations existantes pour la

mémoire distribuée se concentre sur le calcul d’une seule représentation topologique. Le Topology ToolKit (TTK)

vise à fournir un cadre unifié pour les algorithmes TDA avec une structure de données réutilisable et efficace.

Cependant, il était jusqu’à présent limité au parallélisme à mémoire partagée. Dans cette thèse, nous ajoutons

le support pour la mémoire distribuée à TTK grâce à MPI (Message Passing Interface). Dans un premier temps,

nous adaptons la structure de données centrale de TTK et ajoutons le support du distribué à plusieurs algorithmes

existants. Les tests de performance montrent l’efficacité de chaque algorithme ainsi que de l’infrastructure logicielle

globale. De plus, nous appliquons un pipeline d’analyse topologique réel à deux jeux de données massifs afin de

prouver la capacité de notre logiciel à traiter des jeux de données de grande taille. Ensuite, nous concentrons nos

efforts sur une abstraction beaucoup plus complexe : le diagramme de persistance. Sa robustesse et sa fiabilité en

font l’une des représentations topologiques les plus utilisées. Le Discrete Morse Sandwich (DMS) est actuellement

l’algorithme le plus efficace pour calculer le diagramme sur un nœud. Notre nouvelle méthode, le Distributed

Discrete Morse Sandwich (DDMS), repose sur DMS et introduit des modifications adaptées à chaque étape du

calcul, aboutissant à une implémentation hybride MPI+thread. Des tests de performance montrent les gains de

notre approche par rapport à la méthode DMS originale ainsi qu’à DIPHA, la méthode de référence pour le calcul

des diagrammes de persistance en distribué. Notre approche permet le calcul de diagrammes de persistance sur

des jeux de données contenant jusqu’à 6 milliards de sommets.

	Acknowledgments - Remerciements
	Communications
	Contents
	Notations
	Introduction
	General Context and Motivations
	Data Acquisition, Analysis and Visualization
	Topological Data Analysis
	The TORI Project

	Problem formulation
	Distributed-memory Topological Data Analysis
	Mono-tailored distributed implementations
	Persistence diagram computation

	Contributions
	A unified framework for distributed Topological Data Analysis
	Distributed computation of the persistence diagram

	Outline

	Foundations
	Theoretical background on topology
	Input Data Representation
	Basic topological abstractions
	Persistent homology
	Other Topological Abstractions

	Parallel Computing
	Shared-memory parallelism
	Distributed-memory parallelism
	Hybrid MPI+thread programming
	Alternative distributed-memory paradigms
	GPU Computing
	Performance metrics for parallelism on CPUs

	Software environment
	Existing front end visualization software frameworks
	The Topology ToolKit
	Existing TDA software frameworks
	Shared-memory parallelism for TDA

	A Software Framework for Distributed Topological Analysis Pipelines
	Outline
	Related work for distributed-memory TDA methods
	Contributions

	Distributed Model
	Input distribution formalization
	Output distribution formalization
	Implementation specification

	Distributed Triangulation
	Distributed explicit triangulation
	Distributed implicit triangulation
	Distributed implicit periodic triangulation

	Distributed Pipeline
	Overview
	Infrastructure details

	Examples
	Algorithm taxonomy
	Hybrid MPI+thread strategy
	Distributed algorithm examples
	Integrated pipeline

	Results
	Distributed algorithms performance
	Integrated pipeline performance
	Limitations

	Summary

	Distributed Discrete Morse Sandwich: Efficient Computation of Persistence Diagrams for Massive Scalar Data
	Outline
	Related work
	Contributions

	The original Discrete Morse Sandwich algorithm
	Overview
	Extremum-Saddle Persistence Pairs
	Stable and unstable sets computation
	Distributed extremum graph construction
	Self-correcting distributed pairing
	Shared-memory parallelism

	Saddle-Saddle Persistence Pairs
	Distributed-memory parallel algorithm
	Anticipation of propagation computation
	Overlap of communication and computation

	Results
	Datasets
	Performance improvements
	Strong scaling
	Weak scaling
	Performance comparison
	Example
	Limitations

	Summary

	Conclusion
	Summary of Contributions
	A Software Framework for Distributed Topological Analysis Pipelines
	Efficient Computation of Persistence Diagrams for Massive Scalar Data

	Discussion
	Perspectives
	Investigating the cost of ghost simplices generation
	Adding distributed-memory support to NC and DIC algorithms

	Appendix: Data Specification
	Appendix: comparing MPI+thread configurations
	Bibliography

